How to Think Like a Computer Scientist

Learning with Python

How to Think Like a Computer Scientist

Learning with Python

Allen Downey
Jeffrey Elkner
Chris Meyers

Green Tea Press

Wellesley, Massachusetts

Copyright (© 2002 Allen Downey, Jeffrey Elkner, and Chris Meyers.
Edited by Shannon Turlington and Lisa Cutler. Cover design by Rebecca Gimenez.
Printing history:

April 2002: First edition.
August 2008: Second printing.

Green Tea Press

1 Grove St.

P.O. Box 812901
Wellesley, MA 02482

Permission is granted to copy, distribute, and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.1 or any later version published by
the Free Software Foundation; with the Invariant Sections being “Foreword,” “Preface,”
and “Contributor List,” with no Front-Cover Texts, and with no Back-Cover Texts.
A copy of the license is included in the appendix entitled “GNU Free Documentation
License.”

The GNU Free Documentation License is available from www.gnu.org or by writing to
the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307,
USA.

The original form of this book is I#TEX source code. Compiling this ETEX source has
the effect of generating a device-independent representation of a textbook, which can be
converted to other formats and printed.

The ETEX source for this book is available from http://www.thinkpython.com

Publisher’s Cataloging-in-Publication (provided by Quality Books, Inc.)

Downey, Allen

How to think like a computer scientist : learning
with Python / Allen Downey, Jeffrey Elkner, Chris
Meyers. — 1st ed.

p. cm.

Includes index.

ISBN 0-9716775-0-6

LCCN 2002100618

1. Python (Computer program language) 1. Elkner,
Jeffrey. II. Meyers, Chris. III. Title

QA76.73.P98D69 2002 005.13'3
QBI02-200031

Foreword

By David Beazley

As an educator, researcher, and book author, I am delighted to see the completion
of this book. Python is a fun and extremely easy-to-use programming language
that has steadily gained in popularity over the last few years. Developed over
ten years ago by Guido van Rossum, Python’s simple syntax and overall feel is
largely derived from ABC, a teaching language that was developed in the 1980’s.
However, Python was also created to solve real problems and it borrows a wide
variety of features from programming languages such as C++, Java, Modula-3,
and Scheme. Because of this, one of Python’s most remarkable features is its
broad appeal to professional software developers, scientists, researchers, artists,
and educators.

Despite Python’s appeal to many different communities, you may still wonder
“why Python?” or “why teach programming with Python?” Answering these
questions is no simple task—especially when popular opinion is on the side of
more masochistic alternatives such as C++ and Java. However, I think the most
direct answer is that programming in Python is simply a lot of fun and more
productive.

When I teach computer science courses, I want to cover important concepts in
addition to making the material interesting and engaging to students. Unfortu-
nately, there is a tendency for introductory programming courses to focus far too
much attention on mathematical abstraction and for students to become frus-
trated with annoying problems related to low-level details of syntax, compilation,
and the enforcement of seemingly arcane rules. Although such abstraction and
formalism is important to professional software engineers and students who plan
to continue their study of computer science, taking such an approach in an intro-
ductory course mostly succeeds in making computer science boring. When I teach
a course, [don’t want to have a room of uninspired students. I would much rather
see them trying to solve interesting problems by exploring different ideas, taking
unconventional approaches, breaking the rules, and learning from their mistakes.

vi Foreword

In doing so, I don’t want to waste half of the semester trying to sort out obscure
syntax problems, unintelligible compiler error messages, or the several hundred
ways that a program might generate a general protection fault.

One of the reasons why I like Python is that it provides a really nice balance
between the practical and the conceptual. Since Python is interpreted, beginners
can pick up the language and start doing neat things almost immediately with-
out getting lost in the problems of compilation and linking. Furthermore, Python
comes with a large library of modules that can be used to do all sorts of tasks rang-
ing from web-programming to graphics. Having such a practical focus is a great
way to engage students and it allows them to complete significant projects. How-
ever, Python can also serve as an excellent foundation for introducing important
computer science concepts. Since Python fully supports procedures and classes,
students can be gradually introduced to topics such as procedural abstraction,
data structures, and object-oriented programming—all of which are applicable to
later courses on Java or C++. Python even borrows a number of features from
functional programming languages and can be used to introduce concepts that
would be covered in more detail in courses on Scheme and Lisp.

In reading Jeffrey’s preface, I am struck by his comments that Python allowed
him to see a “higher level of success and a lower level of frustration” and that he
was able to “move faster with better results.” Although these comments refer to
his introductory course, I sometimes use Python for these exact same reasons in
advanced graduate level computer science courses at the University of Chicago.
In these courses, I am constantly faced with the daunting task of covering a lot of
difficult course material in a blistering nine week quarter. Although it is certainly
possible for me to inflict a lot of pain and suffering by using a language like C4+,
I have often found this approach to be counterproductive—especially when the
course is about a topic unrelated to just “programming.” I find that using Python
allows me to better focus on the actual topic at hand while allowing students to
complete substantial class projects.

Although Python is still a young and evolving language, I believe that it has a
bright future in education. This book is an important step in that direction.

David Beazley
University of Chicago
Author of the Python Essential Reference

Preface

By Jeff Elkner

This book owes its existence to the collaboration made possible by the Internet
and the free software movement. Its three authors—a college professor, a high
school teacher, and a professional programmer—have yet to meet face to face,
but we have been able to work closely together and have been aided by many
wonderful folks who have donated their time and energy to helping make this
book better.

We think this book is a testament to the benefits and future possibilities of this
kind of collaboration, the framework for which has been put in place by Richard
Stallman and the Free Software Foundation.

How and why I came to use Python

In 1999, the College Board’s Advanced Placement (AP) Computer Science exam
was given in C++ for the first time. As in many high schools throughout the
country, the decision to change languages had a direct impact on the computer
science curriculum at Yorktown High School in Arlington, Virginia, where I teach.
Up to this point, Pascal was the language of instruction in both our first-year and
AP courses. In keeping with past practice of giving students two years of exposure
to the same language, we made the decision to switch to C++ in the first-year
course for the 1997-98 school year so that we would be in step with the College
Board’s change for the AP course the following year.

Two years later, I was convinced that C++ was a poor choice to use for introducing
students to computer science. While it is certainly a very powerful programming
language, it is also an extremely difficult language to learn and teach. I found
myself constantly fighting with C++’s difficult syntax and multiple ways of doing
things, and I was losing many students unnecessarily as a result. Convinced there

viii Preface

had to be a better language choice for our first-year class, I went looking for an
alternative to C++.

I needed a language that would run on the machines in our Linux lab as well as on
the Windows and Macintosh platforms most students have at home. I wanted it to
be free and available electronically, so that students could use it at home regardless
of their income. I wanted a language that was used by professional programmers,
and one that had an active developer community around it. It had to support
both procedural and object-oriented programming. And most importantly, it had
to be easy to learn and teach. When I investigated the choices with these goals
in mind, Python stood out as the best candidate for the job.

I asked one of Yorktown’s talented students, Matt Ahrens, to give Python a try.
In two months he not only learned the language but wrote an application called
pyTicket that enabled our staff to report technology problems via the Web. I knew
that Matt could not have finished an application of that scale in so short a time
in C++, and this accomplishment, combined with Matt’s positive assessment of
Python, suggested that Python was the solution I was looking for.

Finding a textbook

Having decided to use Python in both of my introductory computer science classes
the following year, the most pressing problem was the lack of an available textbook.

Free content came to the rescue. Earlier in the year, Richard Stallman had in-
troduced me to Allen Downey. Both of us had written to Richard expressing an
interest in developing free educational content. Allen had already written a first-
year computer science textbook, How to Think Like a Computer Scientist. When
I read this book, I knew immediately that I wanted to use it in my class. It was
the clearest and most helpful computer science text I had seen. It emphasized
the processes of thought involved in programming rather than the features of a
particular language. Reading it immediately made me a better teacher.

How to Think Like a Computer Scientist was not just an excellent book, but it
had been released under a GNU public license, which meant it could be used
freely and modified to meet the needs of its user. Once I decided to use Python,
it occurred to me that I could translate Allen’s original Java version of the book
into the new language. While I would not have been able to write a textbook on
my own, having Allen’s book to work from made it possible for me to do so, at the
same time demonstrating that the cooperative development model used so well in
software could also work for educational content.

Working on this book for the last two years has been rewarding for both my
students and me, and my students played a big part in the process. Since I could

ix

make instant changes whenever someone found a spelling error or difficult passage,
I encouraged them to look for mistakes in the book by giving them a bonus point
each time they made a suggestion that resulted in a change in the text. This had
the double benefit of encouraging them to read the text more carefully and of
getting the text thoroughly reviewed by its most important critics, students using
it to learn computer science.

For the second half of the book on object-oriented programming, I knew that
someone with more real programming experience than I had would be needed to
do it right. The book sat in an unfinished state for the better part of a year
until the free software community once again provided the needed means for its
completion.

I received an email from Chris Meyers expressing interest in the book. Chris is
a professional programmer who started teaching a programming course last year
using Python at Lane Community College in Eugene, Oregon. The prospect of
teaching the course had led Chris to the book, and he started helping out with it
immediately. By the end of the school year he had created a companion project
on our website at http://www.ibiblio.org/obp called Python for Fun and was
working with some of my most advanced students as a master teacher, guiding
them beyond where I could take them.

Introducing programming with Python

The process of translating and using How to Think Like a Computer Scientist
for the past two years has confirmed Python’s suitability for teaching beginning
students. Python greatly simplifies programming examples and makes important
programming ideas easier to teach.

The first example from the text illustrates this point. It is the traditional “hello,
world” program, which in the C4++ version of the book looks like this:

#include <iostream.h>

void main()

{

cout << "Hello, world." << endl;

}
in the Python version it becomes:
print "Hello, World!"

Even though this is a trivial example, the advantages of Python stand out. York-
town’s Computer Science I course has no prerequisites, so many of the students

X Preface

seeing this example are looking at their first program. Some of them are undoubt-
edly a little nervous, having heard that computer programming is difficult to learn.
The C++ version has always forced me to choose between two unsatisfying op-
tions: either to explain #include, void main(), {, and }, and risk confusing or
intimidating some of the students right at the start, or to tell them, “Just don’t
worry about all of that stuff now; we will talk about it later,” and risk the same
thing. The educational objectives at this point in the course are to introduce
students to the idea of a programming language and to get them to write their
first program, thereby introducing them to the programming environment. The
Python program has exactly what is needed to do these things, and nothing more.

Comparing the explanatory text of the program in each version of the book fur-
ther illustrates what this means to the beginning student. There are thirteen
paragraphs of explanation of “Hello, world!” in the C++4 version; in the Python
version, there are only two. More importantly, the missing eleven paragraphs do
not deal with the “big ideas” in computer programming but with the minutia of
C++ syntax. I found this same thing happening throughout the book. Whole
paragraphs simply disappear from the Python version of the text because Python’s
much clearer syntax renders them unnecessary.

Using a very high-level language like Python allows a teacher to postpone talking
about low-level details of the machine until students have the background that
they need to better make sense of the details. It thus creates the ability to put
“first things first” pedagogically. One of the best examples of this is the way in
which Python handles variables. In C++4 a variable is a name for a place that
holds a thing. Variables have to be declared with types at least in part because
the size of the place to which they refer needs to be predetermined. Thus, the
idea of a variable is bound up with the hardware of the machine. The powerful
and fundamental concept of a variable is already difficult enough for beginning
students (in both computer science and algebra). Bytes and addresses do not help
the matter. In Python a variable is a name that refers to a thing. This is a far
more intuitive concept for beginning students and is much closer to the meaning
of “variable” that they learned in their math courses. I had much less difficulty
teaching variables this year than I did in the past, and I spent less time helping
students with problems using them.

Another example of how Python aids in the teaching and learning of programming
is in its syntax for functions. My students have always had a great deal of difficulty
understanding functions. The main problem centers around the difference between
a function definition and a function call, and the related distinction between a
parameter and an argument. Python comes to the rescue with syntax that is
nothing short of beautiful. Function definitions begin with the keyword def, so I
simply tell my students, “When you define a function, begin with def, followed by
the name of the function that you are defining; when you call a function, simply

xi

call (type) out its name.” Parameters go with definitions; arguments go with calls.
There are no return types, parameter types, or reference and value parameters to
get in the way, so I am now able to teach functions in less than half the time that
it previously took me, with better comprehension.

Using Python has improved the effectiveness of our computer science program for
all students. I see a higher general level of success and a lower level of frustration
than I experienced during the two years I taught C++. I move faster with better
results. More students leave the course with the ability to create meaningful
programs and with the positive attitude toward the experience of programming
that this engenders.

Building a community

I have received email from all over the globe from people using this book to learn or
to teach programming. A user community has begun to emerge, and many people
have been contributing to the project by sending in materials for the companion
website at http://www.thinkpython.com.

With the publication of the book in print form, I expect the growth in the user
community to continue and accelerate. The emergence of this user community and
the possibility it suggests for similar collaboration among educators have been the
most exciting parts of working on this project for me. By working together, we
can increase the quality of materials available for our use and save valuable time.
I invite you to join our community and look forward to hearing from you. Please
write to the authors at feedback@thinkpython. com.

Jeffrey Elkner
Yorktown High School
Arlington, Virginia

Preface

Contributor List

To paraphrase the philosophy of the Free Software Foundation, this book is free
like free speech, but not necessarily free like free pizza. It came about because of
a collaboration that would not have been possible without the GNU Free Docu-
mentation License. So we thank the Free Software Foundation for developing this
license and, of course, making it available to us.

We also thank the more than 100 sharp-eyed and thoughtful readers who have
sent us suggestions and corrections over the past few years. In the spirit of free
software, we decided to express our gratitude in the form of a contributor list.
Unfortunately, this list is not complete, but we are doing our best to keep it up
to date.

If you have a chance to look through the list, you should realize that each person
here has spared you and all subsequent readers from the confusion of a technical
error or a less-than-transparent explanation, just by sending us a note.

Impossible as it may seem after so many corrections, there may still be errors
in this book. If you should stumble across one, please check the online version
of the book at http://thinkpython.com, which is the most up-to-date version.
If the error has not been corrected, please take a minute to send us email at
feedback@thinkpython.com. If we make a change due to your suggestion, you will
appear in the next version of the contributor list (unless you ask to be omitted).
Thank you!

e Lloyd Hugh Allen sent in a correction to Section 8.4.
e Yvon Boulianne sent in a correction of a semantic error in Chapter 5.
e Fred Bremmer submitted a correction in Section 2.1.

e Jonah Cohen wrote the Perl scripts to convert the LaTeX source for this
book into beautiful HTML.

xiv

Contributor List

Michael Conlon sent in a grammar correction in Chapter 2 and an improve-
ment in style in Chapter 1, and he initiated discussion on the technical
aspects of interpreters.

Benoit Girard sent in a correction to a humorous mistake in Section 5.6.

Courtney Gleason and Katherine Smith wrote horsebet . py, which was used
as a case study in an earlier version of the book. Their program can now be
found on the website.

Lee Harr submitted more corrections than we have room to list here, and
indeed he should be listed as one of the principal editors of the text.

James Kaylin is a student using the text. He has submitted numerous cor-
rections.

David Kershaw fixed the broken catTwice function in Section 3.10.

Eddie Lam has sent in numerous corrections to Chapters 1, 2, and 3. He
also fixed the Makefile so that it creates an index the first time it is run and
helped us set up a versioning scheme.

Man-Yong Lee sent in a correction to the example code in Section 2.4.

David Mayo pointed out that the word “unconsciously” in Chapter 1 needed
to be changed to “subconsciously”.

Chris McAloon sent in several corrections to Sections 3.9 and 3.10.

Matthew J. Moelter has been a long-time contributor who sent in numerous
corrections and suggestions to the book.

Simon Dicon Montford reported a missing function definition and several
typos in Chapter 3. He also found errors in the increment function in
Chapter 13.

John Ouzts corrected the definition of “return value” in Chapter 3.

Kevin Parks sent in valuable comments and suggestions as to how to improve
the distribution of the book.

David Pool sent in a typo in the glossary of Chapter 1, as well as kind words
of encouragement.

Michael Schmitt sent in a correction to the chapter on files and exceptions.

Robin Shaw pointed out an error in Section 13.1, where the printTime func-
tion was used in an example without being defined.

XV

Paul Sleigh found an error in Chapter 7 and a bug in Jonah Cohen’s Perl
script that generates HTML from LaTeX.

Craig T. Snydal is testing the text in a course at Drew University. He has
contributed several valuable suggestions and corrections.

Tan Thomas and his students are using the text in a programming course.
They are the first ones to test the chapters in the latter half of the book,
and they have made numerous corrections and suggestions.

Keith Verheyden sent in a correction in Chapter 3.

Peter Winstanley let us know about a longstanding error in our Latin in
Chapter 3.

Chris Wrobel made corrections to the code in the chapter on file I/O and
exceptions.

Moshe Zadka has made invaluable contributions to this project. In addition
to writing the first draft of the chapter on Dictionaries, he provided continual
guidance in the early stages of the book.

Christoph Zwerschke sent several corrections and pedagogic suggestions, and
explained the difference between gleich and selbe.

James Mayer sent us a whole slew of spelling and typographical errors,
including two in the contributor list.

Hayden McAfee caught a potentially confusing inconsistency between two
examples.

Angel Arnal is part of an international team of translators working on the
Spanish version of the text. He has also found several errors in the English
version.

Tauhidul Hoque and Lex Berezhny created the illustrations in Chapter 1
and improved many of the other illustrations.

Dr. Michele Alzetta caught an error in Chapter 8 and sent some interesting
pedagogic comments and suggestions about Fibonacci and Old Maid.

Andy Mitchell caught a typo in Chapter 1 and a broken example in Chapter
2.

Kalin Harvey suggested a clarification in Chapter 7 and caught some typos.

Christopher P. Smith caught several typos and is helping us prepare to
update the book for Python 2.2.

xvi

Contributor List

David Hutchins caught a typo in the Foreword.

Gregor Lingl is teaching Python at a high school in Vienna, Austria. He
is working on a German translation of the book, and he caught a couple of
bad errors in Chapter 5.

Julie Peters caught a typo in the Preface.

Florin Oprina sent in an improvement in makeTime, a correction in
printTime, and a nice typo.

D. J. Webre suggested a clarification in Chapter 3.
Ken found a fistful of errors in Chapters 8, 9 and 11.

Ivo Wever caught a typo in Chapter 5 and suggested a clarification in Chap-
ter 3.

Curtis Yanko suggested a clarification in Chapter 2.

Ben Logan sent in a number of typos and problems with translating the
book into HTML.

Jason Armstrong saw the missing word in Chapter 2.

Louis Cordier noticed a spot in Chapter 16 where the code didn’t match the
text.

Brian Cain suggested several clarifications in Chapters 2 and 3.

Rob Black sent in a passel of corrections, including some changes for Python
2.2.

Jean-Philippe Rey at Ecole Centrale Paris sent a number of patches, includ-
ing some updates for Python 2.2 and other thoughtful improvements.

Jason Mader at George Washington University made a number of useful
suggestions and corrections.

Jan Gundtofte-Bruun reminded us that “a error” is an error.

Abel David and Alexis Dinno reminded us that the plural of “matrix” is
“matrices”, not “matrixes”. This error was in the book for years, but two
readers with the same initials reported it on the same day. Weird.

Charles Thayer encouraged us to get rid of the semi-colons we had put at
the ends of some statements and to clean up our use of “argument” and
“parameter”.

xvii

Roger Sperberg pointed out a twisted piece of logic in Chapter 3.
Sam Bull pointed out a confusing paragraph in Chapter 2.
Andrew Cheung pointed out two instances of “use before def.”
Hans Batra found an error in Chapter 16.

Chris Seberino suggested some improvements in the Preface.

Yuri Takhteyev pointed out a problem with single and double quotes.

xviii Contributor List

Contents

Foreword

Preface

Contributor List

1 The way of the program

1.1
1.2
1.3
1.4
1.5
1.6

The Python programming language
What is a program?
What is debugging?
Formal and natural languages . . .
The first program

Glossary

2 Variables, expressions and statements

2.1
2.2
2.3
2.4
2.5
2.6

Values and types
Variables.
Variable names and keywords . . .
Statements
Evaluating expressions

Operators and operands

vii

xiii

o o O e~ W

Contents

2.7 Order of operations 17
2.8 Operations on strings L 18
2.9 Composition L 19
2,10 Comments 19
211 GlOSSArY . . v v o 20
Functions 23
3.1 Function callso 23
3.2 Typeconversion L Lo 24
3.3 Typecoercion o 24
3.4 Math functions 25
3.5 Compositiono 26
3.6 Adding new functions L 26
3.7 Definitions and use oo 29
3.8 Flowofexecution oL 29
3.9 Parameters and arguments 30
3.10 Variables and parameters are local 31
3.11 Stack diagrams 32
3.12 Functions with results 0L 33
313 Glossaryo e 34
Conditionals and recursion 37
4.1 The modulus operator L L. 37
4.2 Boolean expressions Lo oL 37
4.3 Logical operators Lo 38
4.4 Conditional execution 39
4.5 Alternative execution 39

4.6 Chained conditionals 40

Contents xxi
4.7 Nested conditionals 0. 41
4.8 The returnstatement 42
4.9 Recursion 42
4.10 Stack diagrams for recursive functions 44
4.11 Infinite recursion L 45
4.12 Keyboardinput oo 45
413 Glossaryo 46

5 Fruitful functions 49
5.1 Return values Lo oo 49
5.2 Program development oL 50
5.3 Composition 53
5.4 Boolean functions L Lo oo 54
5.5 More recursion Lo 55
56 Leapoffaith 57
5.7 One more example 58
5.8 Checking types 58
5.9 Glossaryo 60

6 Iteration 61
6.1 Multiple assignment Lo 61
6.2 The while statement L oL 62
6.3 Tables 64
6.4 Two-dimensional tables 66
6.5 Encapsulation and generalization 67
6.6 More encapsulation L 68
6.7 Local variables 69
6.8 More generalization oL Lo oL 70
6.9 Functions 71
6.10 GloSsary o 72

xxii Contents
7 Strings 73
7.1 A compound data type 73
7.2 Length o oo 74
7.3 Traversal and the forloop. 74
74 Stringslices 76
7.5 String comparison L. 76
7.6 Strings are immutable L. 77
77 Afindfunction. Lo 78
7.8 Looping and counting oL 78
7.9 The stringmodule 79
7.10 Character classification 0oL 80
711 Glossary oo 81
8 Lists 83
81 Listwvalues 83
8.2 Accessing elements oo 84
83 Listlength 85
8.4 List membership o 86
8.5 Lists and forloops Lo oL 86
8.6 List operationso oL 87
8.7 Listslices 88
8.8 Listsaremutable oo 88
89 Listdeletion 89
8.10 Objectsand values 91
811 Aliasing 92
812 Cloning lists 92
8.13 List parameters L oL o 93
814 Nestedlists 94

Contents xxiii
8.15 Matrices 94
816 Stringsand lists Lo 95
817 Glossary o v i 96

9 Tuples 97
9.1 Mutability and tuples oL 97
9.2 Tuple assignment L Lo Lo 98
9.3 Tuples asreturn values 99
9.4 Random numbers Lo 99
9.5 List of random numbers oL 100
9.6 Counting. 101
9.7 Many buckets o 102
9.8 Asingle-passsolution. L 104
9.9 GloSSary 105

10 Dictionaries 107
10.1 Dictionary operationso 108
10.2 Dictionary methods L oo 109
10.3 Aliasing and copying oo 110
10.4 Sparse matrices oL 110
105 Hintso 111
10.6 Longintegers 113
10.7 Counting letterso 113
10.8 Glossary e 114

11 Files and exceptions 117
111 Textfiles. o o 119
11.2 Writing variables L oo 120
11.3 Directories L 123

xxiv Contents

11.4 Pickling 123
11.5 Exceptions L e 124
11.6 Glossary o 126
12 Classes and objects 129
12.1 User-defined compound types 129
12.2 Attributes 130
12.3 Instances as arguments 131
124 Sameness 131
12,5 Rectangles L 133
12.6 Instances as return values 134
12.7 Objects are mutable 134
12.8 Copying o o 135
129 Glossary e 137
13 Classes and functions 139
131 Time oo 139
13.2 Purefunctions.o 140
13.3 Modifiers 141
13.4 Which is better? o 142
13.5 Prototype development versus planning 143
13.6 Generalization 144
13.7 Algorithms 144
13.8 Glossary e 145
14 Classes and methods 147
14.1 Object-oriented features 147
142 printTimeo 148

14.3 Another exampleo 149

Contents XXV
14.4 A more complicated example, 150
14.5 Optional arguments oo 151
14.6 The initialization method 152
14.7 Points revisitedo Lo oo 153
14.8 Operator overloading L. 154
14.9 Polymorphism o 155
14.10 Glossary oo e 157

15 Sets of objects 159
15.1 Composition L 159
15.2 Cardobjects. 159
15.3 Class attributes and the __str__method 161
15.4 Comparing cards Lo 162
155 Decks 163
15.6 Printing thedeck oo 163
15.7 Shuffling thedeck L. 165
15.8 Removing and dealing cards L. 166
15,9 Glossaryo e 167

16 Inheritance 169
16.1 Inheritance o 169
162 Ahandofcards 170
16.3 Dealingcards Lo 171
16.4 PrintingaHand. oL, 171
16.5 The CardGame class 172
16.6 0ldMaidHand class 173
16.7 0ldMaidGame class 175
16.8 Glossaryo 179

xxvi Contents

17 Linked lists 181
17.1 Embedded references o oL 181
172 TheNodeclass 181
17.3 Lists ascollections 183
174 Lists and recursion 184
17.5 Infinite lists L 185
17.6 The fundamental ambiguity theorem 186
17.7 Modifying lists o 186
17.8 Wrappers and helpers oo 187
179 The LinkedList class 188
17.10 Invariantso 189
1711 Glossary oo o e 190

18 Stacks 191
18.1 Abstract data types 191
182 The Stack ADT 192
18.3 Implementing stacks with Python lists 192
18.4 Pushing and popping oo 193
18.5 Using a stack to evaluate postfix 194
18.6 Parsing. 194
18.7 Evaluating postfix 195
18.8 Clients and providers 196
189 Glossary e 197

19 Queues 199
19.1 The Queue ADT 199
19.2 Linked Queue 200

19.3 Performance characteristics 201

Contents xxvii

19.4 Improved Linked Queue 201
19.5 Priority queue Lo 203
19.6 The Golferclass 205
19.7 Glossary e 206
20 Trees 207
20.1 Building trees Lo e 208
20.2 Traversing treeso Lo 209
20.3 Expression trees. Lo oo 209
20.4 Treetraversal 210
20.5 Building an expression tree oL L oo 212
20.6 Handling errorso e 216
20.7 The animal tree 216
20.8 Glossaryo e 219
A Debugging 221
A1l Syntax errors 221
A2 Runtime errors 223
A3 Semantic errors L 227
B Creating a new data type 231
B.1 Fraction multiplication o0 232
B.2 Fraction addition Lo Lo 234
B.3 Euclid’s algorithm 0 o0 234
B.4 Comparing fractions oL 235
B.5 Taking it further 0oL 236
B.6 Glossaryo 236
C Recommendations for further reading 239
C.1 Python-related web sites and books 240

C.2 Recommended general computer science books 241

e
e
e

XXV Contents

Chapter 1

The way of the program

The goal of this book is to teach you to think like a computer scientist. This way
of thinking combines some of the best features of mathematics, engineering, and
natural science. Like mathematicians, computer scientists use formal languages
to denote ideas (specifically computations). Like engineers, they design things,
assembling components into systems and evaluating tradeoffs among alternatives.
Like scientists, they observe the behavior of complex systems, form hypotheses,
and test predictions.

The single most important skill for a computer scientist is problem solving.
Problem solving means the ability to formulate problems, think creatively about
solutions, and express a solution clearly and accurately. As it turns out, the
process of learning to program is an excellent opportunity to practice problem-
solving skills. That’s why this chapter is called, “The way of the program.”

On one level, you will be learning to program, a useful skill by itself. On another
level, you will use programming as a means to an end. As we go along, that end
will become clearer.

1.1 The Python programming language

The programming language you will be learning is Python. Python is an example
of a high-level language; other high-level languages you might have heard of
are C, C++, Perl, and Java.

As you might infer from the name “high-level language,” there are also low-
level languages, sometimes referred to as “machine languages” or “assembly

2 The way of the program

languages.” Loosely speaking, computers can only execute programs written in
low-level languages. Thus, programs written in a high-level language have to be
processed before they can run. This extra processing takes some time, which is a
small disadvantage of high-level languages.

But the advantages are enormous. First, it is much easier to program in a high-
level language. Programs written in a high-level language take less time to write,
they are shorter and easier to read, and they are more likely to be correct. Second,
high-level languages are portable, meaning that they can run on different kinds
of computers with few or no modifications. Low-level programs can run on only
one kind of computer and have to be rewritten to run on another.

Due to these advantages, almost all programs are written in high-level languages.
Low-level languages are used only for a few specialized applications.

Two kinds of programs process high-level languages into low-level languages: in-
terpreters and compilers. An interpreter reads a high-level program and exe-
cutes it, meaning that it does what the program says. It processes the program a
little at a time, alternately reading lines and performing computations.

%
SOURCE INTERPRETER OUTPUT
CODE L

O

A compiler reads the program and translates it completely before the program
starts running. In this case, the high-level program is called the source code,
and the translated program is called the object code or the executable. Once
a program is compiled, you can execute it repeatedly without further translation.

SOURCE COMPILER OBJECT EXECUTOR OUTPUT
CODE || copE [

O

Python is considered an interpreted language because Python programs are exe-
cuted by an interpreter. There are two ways to use the interpreter: command-line
mode and script mode. In command-line mode, you type Python programs and
the interpreter prints the result:

1.2 What is a program? 3

$ python

Python 2.4.1 (#1, Apr 29 2005, 00:28:56)

Type "help", "copyright", "credits" or "license" for more information.
>>> print 1 + 1

2

The first line of this example is the command that starts the Python interpreter.
The next two lines are messages from the interpreter. The third line starts with
>>> which is the prompt the interpreter uses to indicate that it is ready. We
typed print 1 + 1, and the interpreter replied 2.

Alternatively, you can write a program in a file and use the interpreter to execute
the contents of the file. Such a file is called a script. For example, we used a text
editor to create a file named latoya.py with the following contents:

print 1 + 1
By convention, files that contain Python programs have names that end with .py.
To execute the program, we have to tell the interpreter the name of the script:

$ python latoya.py
2

In other development environments, the details of executing programs may differ.
Also, most programs are more interesting than this one.

Most of the examples in this book are executed on the command line. Working
on the command line is convenient for program development and testing, because
you can type programs and execute them immediately. Once you have a working
program, you should store it in a script so you can execute or modify it in the
future.

1.2 What is a program?

A program is a sequence of instructions that specifies how to perform a com-
putation. The computation might be something mathematical, such as solving
a system of equations or finding the roots of a polynomial, but it can also be
a symbolic computation, such as searching and replacing text in a document or
(strangely enough) compiling a program.

The details look different in different languages, but a few basic instructions appear
in just about every language:

input: Get data from the keyboard, a file, or some other device.

4 The way of the program

output: Display data on the screen or send data to a file or other device.
math: Perform basic mathematical operations like addition and multiplication.

conditional execution: Check for certain conditions and execute the appropri-
ate sequence of statements.

repetition: Perform some action repeatedly, usually with some variation.

Believe it or not, that’s pretty much all there is to it. Every program you’ve ever
used, no matter how complicated, is made up of instructions that look more or
less like these. Thus, we can describe programming as the process of breaking a
large, complex task into smaller and smaller subtasks until the subtasks are simple
enough to be performed with one of these basic instructions.

That may be a little vague, but we will come back to this topic later when we talk
about algorithms.

1.3 What is debugging?

Programming is a complex process, and because it is done by human beings, it
often leads to errors. For whimsical reasons, programming errors are called bugs
and the process of tracking them down and correcting them is called debugging.

Three kinds of errors can occur in a program: syntax errors, runtime errors, and
semantic errors. It is useful to distinguish between them in order to track them
down more quickly.

1.3.1 Syntax errors

Python can only execute a program if the program is syntactically correct; oth-
erwise, the process fails and returns an error message. Syntax refers to the
structure of a program and the rules about that structure. For example, in En-
glish, a sentence must begin with a capital letter and end with a period. this
sentence contains a syntax error. So does this one

For most readers, a few syntax errors are not a significant problem, which is why
we can read the poetry of e. e. cummings without spewing error messages. Python
is not so forgiving. If there is a single syntax error anywhere in your program,
Python will print an error message and quit, and you will not be able to run
your program. During the first few weeks of your programming career, you will
probably spend a lot of time tracking down syntax errors. As you gain experience,
though, you will make fewer errors and find them faster.

1.3 What is debugging? 5

1.3.2 Runtime errors

The second type of error is a runtime error, so called because the error does
not appear until you run the program. These errors are also called exceptions
because they usually indicate that something exceptional (and bad) has happened.

Runtime errors are rare in the simple programs you will see in the first few chap-
ters, so it might be a while before you encounter one.

1.3.3 Semantic errors

The third type of error is the semantic error. If there is a semantic error in your
program, it will run successfully, in the sense that the computer will not generate
any error messages, but it will not do the right thing. It will do something else.
Specifically, it will do what you told it to do.

The problem is that the program you wrote is not the program you wanted to
write. The meaning of the program (its semantics) is wrong. Identifying semantic
errors can be tricky because it requires you to work backward by looking at the
output of the program and trying to figure out what it is doing.

1.3.4 Experimental debugging

One of the most important skills you will acquire is debugging. Although it can
be frustrating, debugging is one of the most intellectually rich, challenging, and
interesting parts of programming.

In some ways, debugging is like detective work. You are confronted with clues,
and you have to infer the processes and events that led to the results you see.

Debugging is also like an experimental science. Once you have an idea what is
going wrong, you modify your program and try again. If your hypothesis was
correct, then you can predict the result of the modification, and you take a step
closer to a working program. If your hypothesis was wrong, you have to come up
with a new one. As Sherlock Holmes pointed out, “When you have eliminated
the impossible, whatever remains, however improbable, must be the truth.” (A.
Conan Doyle, The Sign of Four)

For some people, programming and debugging are the same thing. That is, pro-
gramming is the process of gradually debugging a program until it does what you
want. The idea is that you should start with a program that does something and
make small modifications, debugging them as you go, so that you always have a
working program.

6 The way of the program

For example, Linux is an operating system that contains thousands of lines of
code, but it started out as a simple program Linus Torvalds used to explore the
Intel 80386 chip. According to Larry Greenfield, “One of Linus’s earlier projects
was a program that would switch between printing AAAA and BBBB. This later
evolved to Linux.” (The Linux Users’ Guide Beta Version 1)

Later chapters will make more suggestions about debugging and other program-
ming practices.

1.4 Formal and natural languages

Natural languages are the languages that people speak, such as English, Span-
ish, and French. They were not designed by people (although people try to impose
some order on them); they evolved naturally.

Formal languages are languages that are designed by people for specific appli-
cations. For example, the notation that mathematicians use is a formal language
that is particularly good at denoting relationships among numbers and symbols.
Chemists use a formal language to represent the chemical structure of molecules.
And most importantly:

Programming languages are formal languages that have been
designed to express computations.

Formal languages tend to have strict rules about syntax. For example, 34+ 3 =6
is a syntactically correct mathematical statement, but 3=+6$ is not. HsO is a
syntactically correct chemical name, but 5 Zz is not.

Syntax rules come in two flavors, pertaining to tokens and structure. Tokens are
the basic elements of the language, such as words, numbers, and chemical elements.
One of the problems with 3=+6$ is that $ is not a legal token in mathematics (at
least as far as we know). Similarly, 2Zz is not legal because there is no element
with the abbreviation Zz.

The second type of syntax error pertains to the structure of a statement—that
is, the way the tokens are arranged. The statement 3=+6$ is structurally illegal
because you can’t place a plus sign immediately after an equal sign. Similarly,
molecular formulas have to have subscripts after the element name, not before.

As an exercise, create what appears to be a well-structured English
sentence with unrecognizable tokens in it. Then write another sentence
with all valid tokens but with invalid structure.

1.4 Formal and natural languages 7

When you read a sentence in English or a statement in a formal language, you
have to figure out what the structure of the sentence is (although in a natural
language you do this subconsciously). This process is called parsing.

For example, when you hear the sentence, “The other shoe fell,” you understand
that “the other shoe” is the subject and “fell” is the predicate. Once you have
parsed a sentence, you can figure out what it means, or the semantics of the
sentence. Assuming that you know what a shoe is and what it means to fall, you
will understand the general implication of this sentence.

Although formal and natural languages have many features in common—tokens,
structure, syntax, and semantics—there are many differences:

ambiguity: Natural languages are full of ambiguity, which people deal with by
using contextual clues and other information. Formal languages are designed
to be nearly or completely unambiguous, which means that any statement
has exactly one meaning, regardless of context.

redundancy: In order to make up for ambiguity and reduce misunderstandings,
natural languages employ lots of redundancy. As a result, they are often
verbose. Formal languages are less redundant and more concise.

literalness: Natural languages are full of idiom and metaphor. If I say, “The
other shoe fell,” there is probably no shoe and nothing falling. Formal
languages mean exactly what they say.

People who grow up speaking a natural language—everyone—often have a hard
time adjusting to formal languages. In some ways, the difference between formal
and natural language is like the difference between poetry and prose, but more so:

Poetry: Words are used for their sounds as well as for their meaning, and the
whole poem together creates an effect or emotional response. Ambiguity is
not only common but often deliberate.

Prose: The literal meaning of words is more important, and the structure con-
tributes more meaning. Prose is more amenable to analysis than poetry but
still often ambiguous.

Programs: The meaning of a computer program is unambiguous and literal, and
can be understood entirely by analysis of the tokens and structure.

Here are some suggestions for reading programs (and other formal languages).
First, remember that formal languages are much more dense than natural lan-
guages, so it takes longer to read them. Also, the structure is very important, so
it is usually not a good idea to read from top to bottom, left to right. Instead,

8 The way of the program

learn to parse the program in your head, identifying the tokens and interpreting
the structure. Finally, the details matter. Little things like spelling errors and
bad punctuation, which you can get away with in natural languages, can make a
big difference in a formal language.

1.5 The first program

Traditionally, the first program written in a new language is called “Hello, World!”
because all it does is display the words, “Hello, World!” In Python, it looks like
this:

print "Hello, World!"

This is an example of a print statement, which doesn’t actually print anything
on paper. It displays a value on the screen. In this case, the result is the words

Hello, World!

The quotation marks in the program mark the beginning and end of the value;
they don’t appear in the result.

Some people judge the quality of a programming language by the simplicity of
the “Hello, World!” program. By this standard, Python does about as well as
possible.

1.6 Glossary

problem solving: The process of formulating a problem, finding a solution, and
expressing the solution.

high-level language: A programming language like Python that is designed to
be easy for humans to read and write.

low-level language: A programming language that is designed to be easy for
a computer to execute; also called “machine language” or “assembly lan-
guage.”

portability: A property of a program that can run on more than one kind of
computer.

interpret: To execute a program in a high-level language by translating it one
line at a time.

compile: To translate a program written in a high-level language into a low-level
language all at once, in preparation for later execution.

1.6 Glossary 9

source code: A program in a high-level language before being compiled.
object code: The output of the compiler after it translates the program.
executable: Another name for object code that is ready to be executed.
script: A program stored in a file (usually one that will be interpreted).
program: A set of instructions that specifies a computation.
algorithm: A general process for solving a category of problems.

bug: An error in a program.

debugging: The process of finding and removing any of the three kinds of pro-
gramming errors.

syntax: The structure of a program.

syntax error: An error in a program that makes it impossible to parse (and
therefore impossible to interpret).

runtime error: An error that does not occur until the program has started to
execute but that prevents the program from continuing.

exception: Another name for a runtime error.

semantic error: An error in a program that makes it do something other than
what the programmer intended.

semantics: The meaning of a program.

natural language: Any one of the languages that people speak that evolved
naturally.

formal language: Any one of the languages that people have designed for spe-
cific purposes, such as representing mathematical ideas or computer pro-
grams; all programming languages are formal languages.

token: One of the basic elements of the syntactic structure of a program, analo-
gous to a word in a natural language.

parse: To examine a program and analyze the syntactic structure.

print statement: An instruction that causes the Python interpreter to display
a value on the screen.

10

The way of the program

Chapter 2

Variables, expressions and
statements

2.1 Values and types

A value is one of the fundamental things—Ilike a letter or a number—that a
program manipulates. The values we have seen so far are 2 (the result when we
added 1 + 1), and ’Hello, World!’.

These values belong to different types: 2 is an integer, and *Hello, World!’
is a string, so-called because it contains a “string” of letters. You (and the
interpreter) can identify strings because they are enclosed in quotation marks.

The print statement also works for integers.

>>> print 4
4

If you are not sure what type a value has, the interpreter can tell you.

>>> type(’Hello, World!’)
<type ’str’>
>>> type(17)
<type ’int’>

Not surprisingly, strings belong to the type str and integers belong to the type
int. Less obviously, numbers with a decimal point belong to a type called float,
because these numbers are represented in a format called floating-point.

12 Variables, expressions and statements

>>> type(3.2)
<type ’float’>

What about values like >17’ and ’3.2°7 They look like numbers, but they are
in quotation marks like strings.

>>> type(’177)
<type ’str’>
>>> type(’3.2°)
<type ’str’>

They’re strings.

When you type a large integer, you might be tempted to use commas between
groups of three digits, as in 1,000,000. This is not a legal integer in Python, but
it is a legal expression:

>>> print 1,000,000
100

Well, that’s not what we expected at alll Python interprets 1,000,000 as a
comma-separated list of three integers, which it prints consecutively. This is the
first example we have seen of a semantic error: the code runs without producing
an error message, but it doesn’t do the “right” thing.

2.2 Variables

One of the most powerful features of a programming language is the ability to
manipulate variables. A variable is a name that refers to a value.

The assignment statement creates new variables and gives them values:

>>> message = "What’s up, Doc?"
>>> n = 17
>>> pi = 3.14159

This example makes three assignments. The first assigns the string "What’s up,
Doc?" to a new variable named message. The second gives the integer 17 to n,
and the third gives the floating-point number 3.14159 to pi.

Notice that the first statement uses double quotes to enclose the string. In general,
single and double quotes do the same thing, but if the string contains a single quote
(or an apostrophe, which is the same character), you have to use double quotes
to enclose it.

2.3 Variable names and keywords 13

A common way to represent variables on paper is to write the name with an arrow
pointing to the variable’s value. This kind of figure is called a state diagram
because it shows what state each of the variables is in (think of it as the variable’s
state of mind). This diagram shows the result of the assignment statements:

message —= "What’s up, Doc?"
n— 17

pi —= 3.14159

The print statement also works with variables.

>>> print message
What’s up, Doc?
>>> print n

17

>>> print pi
3.14159

In each case the result is the value of the variable. Variables also have types;
again, we can ask the interpreter what they are.

>>> type(message)
<type ’str’>

>>> type(n)

<type ’int’>

>>> type(pi)
<type ’float’>

The type of a variable is the type of the value it refers to.

2.3 Variable names and keywords

Programmers generally choose names for their variables that are meaningful—they
document what the variable is used for.

Variable names can be arbitrarily long. They can contain both letters and num-
bers, but they have to begin with a letter. Although it is legal to use uppercase
letters, by convention we don’t. If you do, remember that case matters. Bruce
and bruce are different variables.

The underscore character (-) can appear in a name. It is often used in names with
multiple words, such as my_name or price_of_tea_in_china.

14 Variables, expressions and statements

If you give a variable an illegal name, you get a syntax error:

2.4 Statements 15

>>> T76trombones = ’big parade’
SyntaxError: invalid syntax

>>> more$ = 1000000

SyntaxError: invalid syntax

>>> class = ’Computer Science 101’
SyntaxError: invalid syntax

76trombones is illegal because it does not begin with a letter. more$ is illegal
because it contains an illegal character, the dollar sign. But what’s wrong with
class?

It turns out that class is one of the Python keywords. Keywords define the
language’s rules and structure, and they cannot be used as variable names.

Python has twenty-nine keywords:

and def exec if not return
assert del finally import or try
break elif for in pass while
class else from is print yield
continue except global lambda raise

You might want to keep this list handy. If the interpreter complains about one of
your variable names and you don’t know why, see if it is on this list.

2.4 Statements

A statement is an instruction that the Python interpreter can execute. We have
seen two kinds of statements: print and assignment.

When you type a statement on the command line, Python executes it and displays
the result, if there is one. The result of a print statement is a value. Assignment
statements don’t produce a result.

A script usually contains a sequence of statements. If there is more than one
statement, the results appear one at a time as the statements execute.

For example, the script

print 1
x =2
print x

produces the output

16 Variables, expressions and statements

1
2

Again, the assignment statement produces no output.

2.5 Evaluating expressions

An expression is a combination of values, variables, and operators. If you type
an expression on the command line, the interpreter evaluates it and displays the
result:

>>> 1 + 1
2

Although expressions contain values, variables, and operators, not every expres-
sion contains all of these elements. A value all by itself is considered an expression,
and so is a variable.

>>> 17
17

>>> x
2

Confusingly, evaluating an expression is not quite the same thing as printing a
value.

>>> message = ’Hello, World!’
>>> message

’Hello, World!’

>>> print message

Hello, World!

When the Python interpreter displays the value of an expression, it uses the same
format you would use to enter a value. In the case of strings, that means that it
includes the quotation marks. But if you use a print statement, Python displays
the contents of the string without the quotation marks.

In a script, an expression all by itself is a legal statement, but it doesn’t do
anything. The script

17

3.2

’Hello, World!’
1+1

produces no output at all. How would you change the script to display the values
of these four expressions?

2.6 Operators and operands 17

2.6 Operators and operands

Operators are special symbols that represent computations like addition and
multiplication. The values the operator uses are called operands.

The following are all legal Python expressions whose meaning is more or less clear:

20+32 hour-1 hour*60+minute minute/60 5%*2 (5+9) *(15-7)

The symbols +, -, and /, and the use of parenthesis for grouping, mean in Python
what they mean in mathematics. The asterisk (*) is the symbol for multiplication,
and ** is the symbol for exponentiation.

When a variable name appears in the place of an operand, it is replaced with its
value before the operation is performed.

Addition, subtraction, multiplication, and exponentiation all do what you expect,
but you might be surprised by division. The following operation has an unexpected
result:

>>> minute = 59
>>> minute/60
0

The value of minute is 59, and in conventional arithmetic 59 divided by 60 is
0.98333, not 0. The reason for the discrepancy is that Python is performing
integer division.

When both of the operands are integers, the result must also be an integer, and
by convention, integer division always rounds down, even in cases like this where
the next integer is very close.

A possible solution to this problem is to calculate a percentage rather than a
fraction:

>>> minute*100/60
98

Again the result is rounded down, but at least now the answer is approximately
correct. Another alternative is to use floating-point division, which we get to in
Chapter 3.

2.7 Order of operations

When more than one operator appears in an expression, the order of evaluation
depends on the rules of precedence. Python follows the same precedence rules
for its mathematical operators that mathematics does. The acronym PEMDAS
is a useful way to remember the order of operations:

18 Variables, expressions and statements

e Parentheses have the highest precedence and can be used to force an ex-
pression to evaluate in the order you want. Since expressions in parentheses
are evaluated first, 2 * (3-1) is 4, and (1+1)**(5-2) is 8. You can also
use parentheses to make an expression easier to read, as in (minute * 100)
/ 60, even though it doesn’t change the result.

e Exponentiation has the next highest precedence, so 2**1+1 is 3 and not 4,
and 3*1*x*3 is 3 and not 27.

e Multiplication and Division have the same precedence, which is higher than
Addition and Subtraction, which also have the same precedence. So 2*3-1
yields 5 rather than 4, and 2/3-1 is -1, not 1 (remember that in integer
division, 2/3=0).

e Operators with the same precedence are evaluated from left to right. So
in the expression minute*100/60, the multiplication happens first, yielding
5900/60, which in turn yields 98. If the operations had been evaluated from
right to left, the result would have been 591, which is 59, which is wrong.

2.8 Operations on strings

In general, you cannot perform mathematical operations on strings, even if the
strings look like numbers. The following are illegal (assuming that message has
type string):

message-1 ’Hello’/123 messagex*’Hello’ 715742

Interestingly, the + operator does work with strings, although it does not do
exactly what you might expect. For strings, the + operator represents concate-
nation, which means joining the two operands by linking them end-to-end. For
example:

fruit = ’banana’
bakedGood = ’ nut bread’
print fruit + bakedGood

The output of this program is banana nut bread. The space before the word
nut is part of the string, and is necessary to produce the space between the
concatenated strings.

The * operator also works on strings; it performs repetition. For example, >Fun’*3
is ’FunFunFun’. One of the operands has to be a string; the other has to be an
integer.

2.9 Composition 19

On one hand, this interpretation of + and * makes sense by analogy with addition
and multiplication. Just as 4*3 is equivalent to 4+4+4, we expect *Fun’*3 to
be the same as *Fun’+’Fun’+’Fun’, and it is. On the other hand, there is a
significant way in which string concatenation and repetition are different from
integer addition and multiplication. Can you think of a property that addition
and multiplication have that string concatenation and repetition do not?

2.9 Composition

So far, we have looked at the elements of a program—variables, expressions, and
statements—in isolation, without talking about how to combine them.

One of the most useful features of programming languages is their ability to take
small building blocks and compose them. For example, we know how to add
numbers and we know how to print; it turns out we can do both at the same time:

>>> print 17 + 3
20

In reality, the addition has to happen before the printing, so the actions aren’t
actually happening at the same time. The point is that any expression involving
numbers, strings, and variables can be used inside a print statement. You've
already seen an example of this:

print ’Number of minutes since midnight: ’, hour*60+minute

You can also put arbitrary expressions on the right-hand side of an assignment
statement:

percentage = (minute * 100) / 60

This ability may not seem impressive now, but you will see other examples where
composition makes it possible to express complex computations neatly and con-
cisely.

Warning: There are limits on where you can use certain expressions. For example,
the left-hand side of an assignment statement has to be a variable name, not an
expression. So, the following is illegal: minute+1 = hour.

2.10 Comments

As programs get bigger and more complicated, they get more difficult to read.
Formal languages are dense, and it is often difficult to look at a piece of code and
figure out what it is doing, or why.

20 Variables, expressions and statements

For this reason, it is a good idea to add notes to your programs to explain in
natural language what the program is doing. These notes are called comments,
and they are marked with the # symbol:

compute the percentage of the hour that has elapsed
percentage = (minute * 100) / 60

In this case, the comment appears on a line by itself. You can also put comments
at the end of a line:

percentage = (minute * 100) / 60 # caution: integer division

Everything from the # to the end of the line is ignored—it has no effect on the
program. The message is intended for the programmer or for future programmers
who might use this code. In this case, it reminds the reader about the ever-
surprising behavior of integer division.

This sort of comment is less necessary if you use the integer division operation,
//. It has the same effect as the division operator!, but it signals that the effect
is deliberate.

percentage = (minute * 100) // 60

The integer division operator is like a comment that says, “I know this is integer

division, and I like it that way!”

2.11 Glossary

value: A number or string (or other thing to be named later) that can be stored
in a variable or computed in an expression.

type: A set of values. The type of a value determines how it can be used in
expressions. So far, the types you have seen are integers (type int), floating-
point numbers (type float), and strings (type string).

floating-point: A format for representing numbers with fractional parts.
variable: A name that refers to a value.

statement: A section of code that represents a command or action. So far, the
statements you have seen are assignments and print statements.

assignment: A statement that assigns a value to a variable.

1For now. The behavior of the division operator may change in future versions of Python.

2.11 Glossary 21

state diagram: A graphical representation of a set of variables and the values
to which they refer.

keyword: A reserved word that is used by the compiler to parse a program; you
cannot use keywords like if, def, and while as variable names.

operator: A special symbol that represents a simple computation like addition,
multiplication, or string concatenation.

operand: One of the values on which an operator operates.

expression: A combination of variables, operators, and values that represents a
single result value.

evaluate: To simplify an expression by performing the operations in order to
yield a single value.

integer division: An operation that divides one integer by another and yields
an integer. Integer division yields only the whole number of times that the
numerator is divisible by the denominator and discards any remainder.

rules of precedence: The set of rules governing the order in which expressions
involving multiple operators and operands are evaluated.

concatenate: To join two operands end-to-end.

composition: The ability to combine simple expressions and statements into
compound statements and expressions in order to represent complex com-
putations concisely.

comment: Information in a program that is meant for other programmers (or
anyone reading the source code) and has no effect on the execution of the
program.

22

Variables, expressions and statements

Chapter 3

Functions

3.1 Function calls

You have already seen one example of a function call:

>>> type("32")
<type ’str’>

The name of the function is type, and it displays the type of a value or variable.
The value or variable, which is called the argument of the function, has to be
enclosed in parentheses. It is common to say that a function “takes” an argument
and “returns” a result. The result is called the return value.

Instead of printing the return value, we could assign it to a variable:

>>> betty = type("32")
>>> print betty
<type ’str’>

As another example, the id function takes a value or a variable and returns an
integer that acts as a unique identifier for the value:

>>> id(3)
134882108
>>> betty = 3
>>> id(betty)
134882108

Every value has an id, which is a unique number related to where it is stored in
the memory of the computer. The id of a variable is the id of the value to which
it refers.

24 Functions

3.2 Type conversion

Python provides a collection of built-in functions that convert values from one
type to another. The int function takes any value and converts it to an integer,
if possible, or complains otherwise:

>>> int ("32")

32

>>> int ("Hello")

ValueError: invalid literal for int(): Hello

int can also convert floating-point values to integers, but remember that it trun-
cates the fractional part:

>>> int(3.99999)
3

>>> int(-2.3)

-2

The float function converts integers and strings to floating-point numbers:

>>> float(32)

32.0

>>> float("3.14159")
3.14159

Finally, the str function converts to type string:

>>> str(32)

132)

>>> str(3.14149)
’3.14149°

It may seem odd that Python distinguishes the integer value 1 from the floating-
point value 1.0. They may represent the same number, but they belong to differ-
ent types. The reason is that they are represented differently inside the computer.

3.3 Type coercion

Now that we can convert between types, we have another way to deal with integer
division. Returning to the example from the previous chapter, suppose we want to
calculate the fraction of an hour that has elapsed. The most obvious expression,
minute / 60, does integer arithmetic, so the result is always 0, even at 59 minutes
past the hour.

One solution is to convert minute to floating-point and do floating-point division:

3.4 Math functions 25

>>> minute = 59
>>> float(minute) / 60
0.983333333333

Alternatively, we can take advantage of the rules for automatic type conversion,
which is called type coercion. For the mathematical operators, if either operand
is a float, the other is automatically converted to a float:

>>> minute = 59
>>> minute / 60.0
0.983333333333

By making the denominator a float, we force Python to do floating-point division.

3.4 Math functions

In mathematics, you have probably seen functions like sin and log, and you have
learned to evaluate expressions like sin(pi/2) and log(1/x). First, you evaluate
the expression in parentheses (the argument). For example, pi/2 is approximately
1.571, and 1/x is 0.1 (if x happens to be 10.0).

Then, you evaluate the function itself, either by looking it up in a table or by
performing various computations. The sin of 1.571 is 1, and the log of 0.1 is -1
(assuming that log indicates the logarithm base 10).

This process can be applied repeatedly to evaluate more complicated expressions
like log(1/sin(pi/2)). First, you evaluate the argument of the innermost func-
tion, then evaluate the function, and so on.

Python has a math module that provides most of the familiar mathematical func-
tions. A module is a file that contains a collection of related functions grouped
together.

Before we can use the functions from a module, we have to import them:
>>> import math

To call one of the functions, we have to specify the name of the module and the
name of the function, separated by a dot, also known as a period. This format is
called dot notation.

>>> decibel = math.logl0O (17.0)
>>> angle = 1.5
>>> height = math.sin(angle)

26 Functions

The first statement sets decibel to the logarithm of 17, base 10. There is also a
function called log that takes logarithm base e.

The third statement finds the sine of the value of the variable angle. sin and
the other trigonometric functions (cos, tan, etc.) take arguments in radians. To
convert from degrees to radians, divide by 360 and multiply by 2*pi. For example,
to find the sine of 45 degrees, first calculate the angle in radians and then take
the sine:

>>> degrees = 45

>>> angle = degrees * 2 * math.pi / 360.0
>>> math.sin(angle)

0.707106781187

The constant pi is also part of the math module. If you know your geometry, you
can check the previous result by comparing it to the square root of two divided
by two:

>>> math.sqrt(2) / 2.0
0.707106781187

3.5 Composition

Just as with mathematical functions, Python functions can be composed, meaning
that you use one expression as part of another. For example, you can use any
expression as an argument to a function:

>>> x = math.cos(angle + math.pi/2)

This statement takes the value of pi, divides it by 2, and adds the result to the
value of angle. The sum is then passed as an argument to the cos function.

You can also take the result of one function and pass it as an argument to another:
>>> x = math.exp(math.log(10.0))

This statement finds the log base e of 10 and then raises e to that power. The
result gets assigned to x.

3.6 Adding new functions

So far, we have only been using the functions that come with Python, but it is also
possible to add new functions. Creating new functions to solve your particular

3.6 Adding new functions 27

problems is one of the most useful things about a general-purpose programming
language.

In the context of programming, a function is a named sequence of statements
that performs a desired operation. This operation is specified in a function
definition. The functions we have been using so far have been defined for us,
and these definitions have been hidden. This is a good thing, because it allows us
to use the functions without worrying about the details of their definitions.

The syntax for a function definition is:

def NAME(LIST OF PARAMETERS):
STATEMENTS

You can make up any names you want for the functions you create, except that
you can’t use a name that is a Python keyword. The list of parameters specifies
what information, if any, you have to provide in order to use the new function.

There can be any number of statements inside the function, but they have to
be indented from the left margin. In the examples in this book, we will use an
indentation of two spaces.

The first couple of functions we are going to write have no parameters, so the
syntax looks like this:

def newLine():
print

This function is named newLine. The empty parentheses indicate that it has
no parameters. It contains only a single statement, which outputs a newline
character. (That’s what happens when you use a print command without any
arguments.)

The syntax for calling the new function is the same as the syntax for built-in
functions:

print "First Line."
newLine ()
print "Second Line."

The output of this program is:

First line.

Second line.

Notice the extra space between the two lines. What if we wanted more space
between the lines? We could call the same function repeatedly:

28 Functions

print "First Line."
newLine ()

newLine ()

newLine ()

print "Second Line."

Or we could write a new function named threeLines that prints three new lines:

def threeLines():
newLine()
newLine ()
newLine ()

print "First Line."
threeLines ()
print "Second Line."

This function contains three statements, all of which are indented by two spaces.
Since the next statement is not indented, Python knows that it is not part of the
function.

You should notice a few things about this program:

1. You can call the same procedure repeatedly. In fact, it is quite common and
useful to do so.

2. You can have one function call another function; in this case threelLines
calls newLine.

So far, it may not be clear why it is worth the trouble to create all of these new
functions. Actually, there are a lot of reasons, but this example demonstrates two:

e Creating a new function gives you an opportunity to name a group of state-
ments. Functions can simplify a program by hiding a complex computation
behind a single command and by using English words in place of arcane
code.

e Creating a new function can make a program smaller by eliminating repet-
itive code. For example, a short way to print nine consecutive new lines is
to call threeLines three times.

As an exercise, write a function called nineLines that wuses
threeLines to print nine blank lines. How would you print twenty-
seven new lines?

3.7 Definitions and use 29

3.7 Definitions and use

Pulling together the code fragments from Section 3.6, the whole program looks
like this:

def newLine():
print

def threeLines():
newLine ()
newLine ()
newLine()

print "First Line."
threeLines ()
print "Second Line."

This program contains two function definitions: newLine and threeLines. Func-
tion definitions get executed just like other statements, but the effect is to create
the new function. The statements inside the function do not get executed until
the function is called, and the function definition generates no output.

As you might expect, you have to create a function before you can execute it. In
other words, the function definition has to be executed before the first time it is
called.

As an exercise, move the last three lines of this program to the top, so
the function calls appear before the definitions. Run the program and
see what error message you get.

As another exercise, start with the working version of the program and
move the definition of newLine after the definition of threeLines.
What happens when you run this program?

3.8 Flow of execution

In order to ensure that a function is defined before its first use, you have to know
the order in which statements are executed, which is called the flow of execution.

Execution always begins at the first statement of the program. Statements are
executed one at a time, in order from top to bottom.

Function definitions do not alter the flow of execution of the program, but re-
member that statements inside the function are not executed until the function

30 Functions

is called. Although it is not common, you can define one function inside another.
In this case, the inner definition isn’t executed until the outer function is called.

Function calls are like a detour in the flow of execution. Instead of going to the
next statement, the flow jumps to the first line of the called function, executes all
the statements there, and then comes back to pick up where it left off.

That sounds simple enough, until you remember that one function can call an-
other. While in the middle of one function, the program might have to execute
the statements in another function. But while executing that new function, the
program might have to execute yet another function!

Fortunately, Python is adept at keeping track of where it is, so each time a function
completes, the program picks up where it left off in the function that called it.
When it gets to the end of the program, it terminates.

What’s the moral of this sordid tale? When you read a program, don’t read from
top to bottom. Instead, follow the flow of execution.

3.9 Parameters and arguments

Some of the built-in functions you have used require arguments, the values that
control how the function does its job. For example, if you want to find the sine of
a number, you have to indicate what the number is. Thus, sin takes a numeric
value as an argument.

Some functions take more than one argument. For example, pow takes two argu-
ments, the base and the exponent. Inside the function, the values that are passed
get assigned to variables called parameters.

Here is an example of a user-defined function that has a parameter:

def printTwice(bruce):
print bruce, bruce

This function takes a single argument and assigns it to a parameter named bruce.
The value of the parameter (at this point we have no idea what it will be) is
printed twice, followed by a newline. The name bruce was chosen to suggest that
the name you give a parameter is up to you, but in general, you want to choose
something more illustrative than bruce.

The function printTwice works for any type that can be printed:

>>> printTwice(’Spam’)
Spam Spam

3.10 Variables and parameters are local 31

>>> printTwice(5)

55

>>> printTwice(3.14159)
3.14159 3.14159

In the first function call, the argument is a string. In the second, it’s an integer.
In the third, it’s a float.

The same rules of composition that apply to built-in functions also apply to
user-defined functions, so we can use any kind of expression as an argument for
printTwice:

>>> printTwice(’Spam’*4)
SpamSpamSpamSpam SpamSpamSpamSpam
>>> printTwice(math.cos(math.pi))
-1.0 -1.0

As usual, the expression is evaluated before the function is run, so printTwice
prints SpamSpamSpamSpam SpamSpamSpamSpam instead of ’Spam’*4 ’Spam’*4.

As an exercise, write a call to printTwice that does print >Spam’*4
’Spam’*4. Hint: strings can be enclosed in either single or double
quotes, and the type of quote not used to enclose the string can be used
inside it as part of the string.

We can also use a variable as an argument:

>>> michael = ’Eric, the half a bee.’
>>> printTwice(michael)
Eric, the half a bee. Eric, the half a bee.

Notice something very important here. The name of the variable we pass as an
argument (michael) has nothing to do with the name of the parameter (bruce).
It doesn’t matter what the value was called back home (in the caller); here in
printTwice, we call everybody bruce.

3.10 Variables and parameters are local

When you create a local variable inside a function, it only exists inside the
function, and you cannot use it outside. For example:

def catTwice(partl, part2):
cat = partl + part2
printTwice(cat)

32 Functions

This function takes two arguments, concatenates them, and then prints the result
twice. We can call the function with two strings:

>>> chantl = "Pie Jesu domine, "

>>> chant2 = "Dona eis requiem."

>>> catTwice(chantl, chant?2)

Pie Jesu domine, Dona eis requiem. Pie Jesu domine, Dona eis requiem.

When catTwice terminates, the variable cat is destroyed. If we try to print it,
we get an error:

>>> print cat
NameError: cat

Parameters are also local. For example, outside the function printTwice, there
is no such thing as bruce. If you try to use it, Python will complain.

3.11 Stack diagrams

To keep track of which variables can be used where, it is sometimes useful to draw
a stack diagram. Like state diagrams, stack diagrams show the value of each
variable, but they also show the function to which each variable belongs.

Each function is represented by a frame. A frame is a box with the name of a
function beside it and the parameters and variables of the function inside it. The
stack diagram for the previous example looks like this:

__main__ | chantt —= "Pie Jesu domine,"

chant2 —= "Dona eis requiem."

catTwice | partl —= "Pie Jesu domine,"
part2 —= "Dona eis requiem."

cat —= "Pie Jesu domine, Dona eis requiem.

printTwice | bruce —= "Pie Jesu domine, Dona eis requiem."

3.12 Functions with results 33

The order of the stack shows the flow of execution. printTwice was called by
catTwice, and catTwice was called by __main__, which is a special name for the
topmost function. When you create a variable outside of any function, it belongs
to _main__.

Each parameter refers to the same value as its corresponding argument. So, partl
has the same value as chantl, part2 has the same value as chant2, and bruce
has the same value as cat.

If an error occurs during a function call, Python prints the name of the function,
and the name of the function that called it, and the name of the function that
called that, all the way back to __main__.

For example, if we try to access cat from within printTwice, we get a NameError:

Traceback (innermost last):
File "test.py", line 13, in __main_
catTwice(chantl, chant2)
File "test.py", line 5, in catTwice
printTwice(cat)
File "test.py", line 9, in printTwice
print cat
NameError: cat

This list of functions is called a traceback. It tells you what program file the
error occurred in, and what line, and what functions were executing at the time.
It also shows the line of code that caused the error.

Notice the similarity between the traceback and the stack diagram. It’s not a
coincidence.

3.12 Functions with results

You might have noticed by now that some of the functions we are using, such
as the math functions, yield results. Other functions, like newLine, perform an
action but don’t return a value. That raises some questions:

1. What happens if you call a function and you don’t do anything with the
result (i.e., you don’t assign it to a variable or use it as part of a larger
expression)?

2. What happens if you use a function without a result as part of an expression,
such as newLine() + 77

34 Functions

3. Can you write functions that yield results, or are you stuck with simple
function like newLine and printTwice?

The answer to the last question is that you can write functions that yield results,
and we’ll do it in Chapter 5.

As an ezercise, answer the other two questions by trying them out.
When you have a question about what is legal or illegal in Python, a
good way to find out is to ask the interpreter.

3.13 Glossary

function call: A statement that executes a function. It consists of the name of
the function followed by a list of arguments enclosed in parentheses.

argument: A value provided to a function when the function is called. This
value is assigned to the corresponding parameter in the function.

return value: The result of a function. If a function call is used as an expression,
the return value is the value of the expression.

type conversion: An explicit statement that takes a value of one type and com-
putes a corresponding value of another type.

type coercion: A type conversion that happens automatically according to
Python’s coercion rules.

module: A file that contains a collection of related functions and classes.

dot notation: The syntax for calling a function in another module, specifying
the module name followed by a dot (period) and the function name.

function: A named sequence of statements that performs some useful operation.
Functions may or may not take arguments and may or may not produce a
result.

function definition: A statement that creates a new function, specifying its
name, parameters, and the statements it executes.

flow of execution: The order in which statements are executed during a pro-
gram run.

parameter: A name used inside a function to refer to the value passed as an
argument.

3.13 Glossary 35

local variable: A variable defined inside a function. A local variable can only
be used inside its function.

stack diagram: A graphical representation of a stack of functions, their vari-
ables, and the values to which they refer.

frame: A box in a stack diagram that represents a function call. It contains the
local variables and parameters of the function.

traceback: A list of the functions that are executing, printed when a runtime
€rTor OCCUrs.

36

Functions

Chapter 4

Conditionals and recursion

4.1 The modulus operator

The modulus operator works on integers (and integer expressions) and yields
the remainder when the first operand is divided by the second. In Python, the
modulus operator is a percent sign (%). The syntax is the same as for other
operators:

>>> quotient =7 / 3
>>> print quotient

2

>>> remainder = 7 % 3
>>> print remainder

1

So 7 divided by 3 is 2 with 1 left over.

The modulus operator turns out to be surprisingly useful. For example, you can
check whether one number is divisible by another—if x % y is zero, then x is
divisible by y.

Also, you can extract the right-most digit or digits from a number. For example,
x % 10 yields the right-most digit of x (in base 10). Similarly x % 100 yields the
last two digits.

4.2 Boolean expressions

A boolean expression is an expression that is either true or false. One way to
write a boolean expression is to use the operator ==, which compares two values
and produces a boolean value:

38 Conditionals and recursion

>>> b5 == 5
True
>>> 5 == 6
False

In the first statement, the two operands are equal, so the value of the expression
is True; in the second statement, 5 is not equal to 6, so we get False. True and
False are special values that are built into Python.

The == operator is one of the comparison operators; the others are:

x =y # x is not equal to y

x>y # x is greater than y

x <y # x is less than y

X >=y # x is greater than or equal to y
x <=y # x is less than or equal to y

Although these operations are probably familiar to you, the Python symbols are
different from the mathematical symbols. A common error is to use a single equal
sign (=) instead of a double equal sign (==). Remember that = is an assignment
operator and == is a comparison operator. Also, there is no such thing as =< or
=>,

4.3 Logical operators

There are three logical operators: and, or, and not. The semantics (meaning)
of these operators is similar to their meaning in English. For example, x > 0 and
x < 10 is true only if x is greater than 0 and less than 10.

n%2 == 0 or n%3 == 0 is true if either of the conditions is true, that is, if the
number is divisible by 2 or 3.

Finally, the not operator negates a boolean expression, so not(x > y) is true if
(x > y) is false, that is, if x is less than or equal to y.

Strictly speaking, the operands of the logical operators should be boolean ex-
pressions, but Python is not very strict. Any nonzero number is interpreted as
“true.”

>>> x =5
>>> x and 1
1

>>> y =0

>>> y and 1
0

4.4 Conditional execution 39

In general, this sort of thing is not considered good style. If you want to compare
a value to zero, you should do it explicitly.

4.4 Conditional execution

In order to write useful programs, we almost always need the ability to check
conditions and change the behavior of the program accordingly. Conditional
statements give us this ability. The simplest form is the if statement:

if x > 0:
print "x is positive"

The boolean expression after the if statement is called the condition. If it is
true, then the indented statement gets executed. If not, nothing happens.

Like other compound statements, the if statement is made up of a header and a
block of statements:

HEADER:
FIRST STATEMENT

LAST STATEMENT

The header begins on a new line and ends with a colon (:). The indented state-
ments that follow are called a block. The first unindented statement marks the
end of the block. A statement block inside a compound statement is called the
body of the statement.

There is no limit on the number of statements that can appear in the body of an
if statement, but there has to be at least one. Occasionally, it is useful to have a
body with no statements (usually as a place keeper for code you haven’t written
yet). In that case, you can use the pass statement, which does nothing.

4.5 Alternative execution

A second form of the if statement is alternative execution, in which there are two
possibilities and the condition determines which one gets executed. The syntax
looks like this:

if x%2 == 0:

print x, "is even"
else:

print x, "is odd"

40 Conditionals and recursion

If the remainder when x is divided by 2 is 0, then we know that x is even, and
the program displays a message to that effect. If the condition is false, the second
set of statements is executed. Since the condition must be true or false, exactly
one of the alternatives will be executed. The alternatives are called branches,
because they are branches in the flow of execution.

As an aside, if you need to check the parity (evenness or oddness) of numbers
often, you might “wrap” this code in a function:

def printParity(x):
if x42 ==
print x, "is even"
else:
print x, "is odd"

For any value of x, printParity displays an appropriate message. When you call
it, you can provide any integer expression as an argument.

>>> printParity(17)
17 is odd
>>> y = 17
>>> printParity(y+1)
18 is even

4.6 Chained conditionals

Sometimes there are more than two possibilities and we need more than two
branches. One way to express a computation like that is a chained conditional:

if x < y:

print x, "is less than", y
elif x > y:

print x, "is greater than", y
else:

print x, "and", y, "are equal"

elif is an abbreviation of “else if.” Again, exactly one branch will be executed.
There is no limit of the number of elif statements, but the last branch has to be
an else statement:

if choice == ’A’:
functionA()

elif choice == ’B’:
functionB()

elif choice == ’C’:
functionC()

else:
print "Invalid choice."

4.7 Nested conditionals 41

Each condition is checked in order. If the first is false, the next is checked, and so
on. If one of them is true, the corresponding branch executes, and the statement
ends. Even if more than one condition is true, only the first true branch executes.

As an exercise, wrap these examples in functions called
compare(x, y) and dispatch(choice).

4.7 Nested conditionals

One conditional can also be nested within another. We could have written the
trichotomy example as follows:

if x ==
print x, "and", y, "are equal"
else:
if x < y:
print x, "is less than", y
else:
print x, "is greater than", y

The outer conditional contains two branches. The first branch contains a simple
output statement. The second branch contains another if statement, which has
two branches of its own. Those two branches are both output statements, although
they could have been conditional statements as well.

Although the indentation of the statements makes the structure apparent, nested
conditionals become difficult to read very quickly. In general, it is a good idea to
avoid them when you can.

Logical operators often provide a way to simplify nested conditional statements.
For example, we can rewrite the following code using a single conditional:

if 0 < x:
if x < 10:
print "x is a positive single digit."

The print statement is executed only if we make it past both the conditionals,
so we can use the and operator:

if 0 < x and x < 10:
print "x is a positive single digit."

These kinds of conditions are common, so Python provides an alternative syntax
that is similar to mathematical notation:

42 Conditionals and recursion

if 0 < x < 10:
print "x is a positive single digit."

This condition is semantically the same as the compound boolean expression and
the nested conditional.

4.8 The return statement

The return statement allows you to terminate the execution of a function before
you reach the end. One reason to use it is if you detect an error condition:

import math

def printLogarithm(x):
if x <= 0:
print "Positive numbers only, please."
return

result = math.log(x)
print "The log of x is", result

The function printLogarithm has a parameter named x. The first thing it does is
check whether x is less than or equal to 0, in which case it displays an error message
and then uses return to exit the function. The flow of execution immediately
returns to the caller, and the remaining lines of the function are not executed.

Remember that to use a function from the math module, you have to import it.

4.9 Recursion

We mentioned that it is legal for one function to call another, and you have seen
several examples of that. We neglected to mention that it is also legal for a
function to call itself. It may not be obvious why that is a good thing, but it
turns out to be one of the most magical and interesting things a program can do.
For example, look at the following function:

def countdown(n):
if n ==
print "Blastoff!"
else:
print n
countdown(n-1)

4.9 Recursion 43

countdown expects the parameter, n, to be a positive integer. If n is 0, it outputs
the word, “Blastoff!” Otherwise, it outputs n and then calls a function named
countdown—itself—passing n-1 as an argument.

What happens if we call this function like this:
>>> countdown(3)

The execution of countdown begins with n=3, and since n is not 0, it outputs the
value 3, and then calls itself...

The execution of countdown begins with n=2, and since n is not 0, it
outputs the value 2, and then calls itself...

The execution of countdown begins with n=1, and since n is
not 0, it outputs the value 1, and then calls itself...

The execution of countdown begins with n=0, and
since n is 0, it outputs the word, “Blastoff!” and
then returns.

The countdown that got n=1 returns.

The countdown that got n=2 returns.

The countdown that got n=3 returns.

And then you're back in _main__ (what a trip). So, the total output looks like
this:

3
2
1
Blastoff!

As a second example, look again at the functions newLine and threeLines:

def newline():
print

def threeLines():
newLine ()
newLine ()
newLine ()

Although these work, they would not be much help if we wanted to output 2
newlines, or 106. A better alternative would be this:

44 Conditionals and recursion

def nLines(n):
if n > 0O:
print
nLines(n-1)

This program is similar to countdown; as long as n is greater than 0, it outputs one
newline and then calls itself to output n-1 additional newlines. Thus, the total
number of newlines is 1 + (n - 1) which, if you do your algebra right, comes out
to n.

The process of a function calling itself is recursion, and such functions are said
to be recursive.

4.10 Stack diagrams for recursive functions

In Section 3.11, we used a stack diagram to represent the state of a program during
a function call. The same kind of diagram can help interpret a recursive function.

Every time a function gets called, Python creates a new function frame, which
contains the function’s local variables and parameters. For a recursive function,
there might be more than one frame on the stack at the same time.

This figure shows a stack diagram for countdown called with n = 3:

__main__

countdown n— 3

countdown n— 2

countdown n— 1

countdown n—— 0

As usual, the top of the stack is the frame for _main__. It is empty because we
did not create any variables in _main__ or pass any arguments to it.

The four countdown frames have different values for the parameter n. The bottom
of the stack, where n=0, is called the base case. It does not make a recursive
call, so there are no more frames.

As an exercise, draw a stack diagram for nLines called with n=4.

4.11 Infinite recursion 45

4.11 Infinite recursion

If a recursion never reaches a base case, it goes on making recursive calls forever,
and the program never terminates. This is known as infinite recursion, and it is
generally not considered a good idea. Here is a minimal program with an infinite
recursion:

def recurse():
recurse ()

In most programming environments, a program with infinite recursion does not
really run forever. Python reports an error message when the maximum recursion
depth is reached:

File "<stdin>", line 2, in recurse

(98 repetitions omitted)

File "<stdin>", line 2, in recurse
RuntimeError: Maximum recursion depth exceeded

This traceback is a little bigger than the one we saw in the previous chapter.
When the error occurs, there are 100 recurse frames on the stack!

As an exercise, write a function with infinite recursion and run it in
the Python interpreter.

4.12 Keyboard input

The programs we have written so far are a bit rude in the sense that they accept
no input from the user. They just do the same thing every time.

Python provides built-in functions that get input from the keyboard. The simplest
is called raw_input. When this function is called, the program stops and waits
for the user to type something. When the user presses Return or the Enter key,
the program resumes and raw_input returns what the user typed as a string:

>>> input = raw_input ()
What are you waiting for?
>>> print input

What are you waiting for?

Before calling raw_input, it is a good idea to print a message telling the user
what to input. This message is called a prompt. We can supply a prompt as an
argument to raw_input:

46 Conditionals and recursion

>>> name = raw_input ("What...is your name? ")
What...is your name? Arthur, King of the Britons!
>>> print name

Arthur, King of the Britons!

If we expect the response to be an integer, we can use the input function:

prompt = "What...is the airspeed velocity of an unladen swallow?\n"
speed = input(prompt)

The sequence \n at the end of the string represents a newline, so the user’s input
appears below the prompt.

If the user types a string of digits, it is converted to an integer and assigned to
speed. Unfortunately, if the user types a character that is not a digit, the program
crashes:

>>> speed = input (prompt)

What...is the airspeed velocity of an unladen swallow?
What do you mean, an African or a European swallow?
SyntaxError: invalid syntax

To avoid this kind of error, it is generally a good idea to use raw_input to get a
string and then use conversion functions to convert to other types.

4.13 Glossary

modulus operator: An operator, denoted with a percent sign (%), that works on
integers and yields the remainder when one number is divided by another.

boolean expression: An expression that is either true or false.

comparison operator: One of the operators that compares two values: ==, 1=
>, <, >=, and <=.

logical operator: One of the operators that combines boolean expressions: and,
or, and not.

conditional statement: A statement that controls the flow of execution depend-
ing on some condition.

condition: The boolean expression in a conditional statement that determines
which branch is executed.

compound statement: A statement that consists of a header and a body. The
header ends with a colon (:). The body is indented relative to the header.

4.13 Glossary 47

block: A group of consecutive statements with the same indentation.
body: The block in a compound statement that follows the header.

nesting: One program structure within another, such as a conditional statement
inside a branch of another conditional statement.

recursion: The process of calling the function that is currently executing.

base case: A branch of the conditional statement in a recursive function that
does not result in a recursive call.

infinite recursion: A function that calls itself recursively without ever reaching
the base case. Eventually, an infinite recursion causes a runtime error.

prompt: A visual cue that tells the user to input data.

48

Conditionals and recursion

Chapter 5

Fruitful functions

5.1 Return values

Some of the built-in functions we have used, such as the math functions, have
produced results. Calling the function generates a new value, which we usually
assign to a variable or use as part of an expression.

e = math.exp(1.0)
height = radius * math.sin(angle)

But so far, none of the functions we have written has returned a value.

In this chapter, we are going to write functions that return values, which we will
call fruitful functions, for want of a better name. The first example is area,
which returns the area of a circle with the given radius:

import math

def area(radius):
temp = math.pi * radius**2
return temp

We have seen the return statement before, but in a fruitful function the return
statement includes a return value. This statement means: “Return immediately
from this function and use the following expression as a return value.” The ex-
pression provided can be arbitrarily complicated, so we could have written this
function more concisely:

def area(radius):
return math.pi * radius**2

50 Fruitful functions

On the other hand, temporary variables like temp often make debugging easier.

Sometimes it is useful to have multiple return statements, one in each branch of
a conditional:

def absoluteValue(x):
if x < 0:
return -x
else:
return x

Since these return statements are in an alternative conditional, only one will be
executed. As soon as one is executed, the function terminates without executing
any subsequent statements.

Code that appears after a return statement, or any other place the flow of exe-
cution can never reach, is called dead code.

In a fruitful function, it is a good idea to ensure that every possible path through
the program hits a return statement. For example:

def absoluteValue(x):
if x < 0:
return -x
elif x > O:
return x

This program is not correct because if x happens to be 0, neither condition is
true, and the function ends without hitting a return statement. In this case, the
return value is a special value called None:

>>> print absoluteValue(0)
None

As an ezercise, write a compare function that returns 1 if x
>y,04fx ==y, and -1 ifx < y.

5.2 Program development

At this point, you should be able to look at complete functions and tell what
they do. Also, if you have been doing the exercises, you have written some small
functions. As you write larger functions, you might start to have more difficulty,
especially with runtime and semantic errors.

To deal with increasingly complex programs, we are going to suggest a technique
called incremental development. The goal of incremental development is to

5.2 Program development 51

avoid long debugging sessions by adding and testing only a small amount of code
at a time.

As an example, suppose you want to find the distance between two points, given by
the coordinates (z1,y1) and (z2,y2). By the Pythagorean theorem, the distance
is:

distance = /(z2 — 21)2 + (y2 — y1)?

The first step is to consider what a distance function should look like in Python.
In other words, what are the inputs (parameters) and what is the output (return
value)?

In this case, the two points are the inputs, which we can represent using four
parameters. The return value is the distance, which is a floating-point value.

Already we can write an outline of the function:

def distance(xl, yi, x2, y2):
return 0.0

Obviously, this version of the function doesn’t compute distances; it always returns
zero. But it is syntactically correct, and it will run, which means that we can test
it before we make it more complicated.

To test the new function, we call it with sample values:

>>> distance(1, 2, 4, 6)
0.0

We chose these values so that the horizontal distance equals 3 and the vertical
distance equals 4; that way, the result is 5 (the hypotenuse of a 3-4-5 triangle).
When testing a function, it is useful to know the right answer.

At this point we have confirmed that the function is syntactically correct, and we
can start adding lines of code. After each incremental change, we test the function
again. If an error occurs at any point, we know where it must be—in the last line
we added.

A logical first step in the computation is to find the differences x2 —x1 and yo — 1.
We will store those values in temporary variables named dx and dy and print them.

def distance(xl, y1, x2, y2):
dx = x2 - x1
dy = y2 - y1
print "dx is", dx
print "dy is", dy
return 0.0

52 Fruitful functions

If the function is working, the outputs should be 3 and 4. If so, we know that
the function is getting the right arguments and performing the first computation
correctly. If not, there are only a few lines to check.

Next we compute the sum of squares of dx and dy:

def distance(xl, y1, x2, y2):
dx = x2 - x1
dy = y2 - y1
dsquared = dx**2 + dy**2
print "dsquared is: ", dsquared
return 0.0

Notice that we removed the print statements we wrote in the previous step. Code
like that is called scaffolding because it is helpful for building the program but
is not part of the final product.

Again, we would run the program at this stage and check the output (which should
be 25).

Finally, if we have imported the math module, we can use the sqrt function to
compute and return the result:

def distance(xl, yi, x2, y2):
dx = x2 - x1
dy = y2 - y1
dsquared = dx**2 + dy**2
result = math.sqrt(dsquared)
return result

If that works correctly, you are done. Otherwise, you might want to print the
value of result before the return statement.

When you start out, you should add only a line or two of code at a time. As
you gain more experience, you might find yourself writing and debugging bigger
chunks. Either way, the incremental development process can save you a lot of
debugging time.

The key aspects of the process are:

1. Start with a working program and make small incremental changes. At any
point, if there is an error, you will know exactly where it is.

2. Use temporary variables to hold intermediate values so you can output and
check them.

5.3 Composition 53

3. Once the program is working, you might want to remove some of the scaf-
folding or consolidate multiple statements into compound expressions, but
only if it does not make the program difficult to read.

As an exercise, use incremental development to write a function called
hypotenuse that returns the length of the hypotenuse of a right triangle
given the lengths of the two legs as arguments. Record each stage of
the incremental development process as you go.

5.3 Composition

As you should expect by now, you can call one function from within another. This
ability is called composition.

As an example, we’ll write a function that takes two points, the center of the circle
and a point on the perimeter, and computes the area of the circle.

Assume that the center point is stored in the variables xc and yc, and the perime-
ter point is in xp and yp. The first step is to find the radius of the circle, which is
the distance between the two points. Fortunately, there is a function, distance,
that does that:

radius = distance(xc, yc, xp, yp)
The second step is to find the area of a circle with that radius and return it:

result = area(radius)
return result

Wrapping that up in a function, we get:

def area2(xc, yc, xp, yp):
radius = distance(xc, yc, xp, yp)
result = area(radius)
return result

We called this function area2 to distinguish it from the area function defined
earlier. There can only be one function with a given name within a given module.

The temporary variables radius and result are useful for development and de-
bugging, but once the program is working, we can make it more concise by com-
posing the function calls:

def area2(xc, yc, xp, yp):
return area(distance(xc, yc, xp, yp))

54

Fruitful functions

As an exercise, write a function slope(xl, y1, x2, y2) that returns
the slope of the line through the points (x1,yl) and (x2,y2). Then use
this function in a function called intercept(xl, y1, x2, y2) that
returns the y-intercept of the line through the points (x1, y1) and

(x2, y2).

5.4 Boolean functions

Functions can return boolean values, which is often convenient for hiding compli-

cated tests inside functions. For example:

def isDivisible(x, y):
if x %y == 0:
return True
else:
return False

The name of this function is isDivisible. It is common to give boolean functions
names that sound like yes/no questions. isDivisible returns either True or

False to indicate whether the x is or is not divisible by y.

We can make the function more concise by taking advantage of the fact that the
condition of the if statement is itself a boolean expression. We can return it

directly, avoiding the if statement altogether:

def isDivisible(x, y):
return x % y ==

This session shows the new function in action:

>>> isDivisible(6, 4)
False
>>> isDivisible(6, 3)
True

Boolean functions are often used in conditional statements:

if isDivisible(x, y):

print "x is divisible by y"
else:

print "x is not divisible by y"

It might be tempting to write something like:

if isDivisible(x, y) == True:

5.5 More recursion 55

But the extra comparison is unnecessary.

As an exercise, write a function isBetween(x, y, z) that returns
True if y < x < z or False otherwise.

5.5 More recursion

So far, you have only learned a small subset of Python, but you might be inter-
ested to know that this subset is a complete programming language, which means
that anything that can be computed can be expressed in this language. Any pro-
gram ever written could be rewritten using only the language features you have
learned so far (actually, you would need a few commands to control devices like
the keyboard, mouse, disks, etc., but that’s all).

Proving that claim is a nontrivial exercise first accomplished by Alan Turing, one
of the first computer scientists (some would argue that he was a mathematician,
but a lot of early computer scientists started as mathematicians). Accordingly, it
is known as the Turing Thesis. If you take a course on the Theory of Computation,
you will have a chance to see the proof.

To give you an idea of what you can do with the tools you have learned so far, we’ll
evaluate a few recursively defined mathematical functions. A recursive definition is
similar to a circular definition, in the sense that the definition contains a reference
to the thing being defined. A truly circular definition is not very useful:

frabjuous: An adjective used to describe something that is frabjuous.

If you saw that definition in the dictionary, you might be annoyed. On the other
hand, if you looked up the definition of the mathematical function factorial, you
might get something like this:

ol=1

n! =n(n—1)!

This definition says that the factorial of 0 is 1, and the factorial of any other value,
n, is n multiplied by the factorial of n — 1.

So 3!l is 3 times 2!, which is 2 times 1!, which is 1 times 0!. Putting it all together,
3! equals 3 times 2 times 1 times 1, which is 6.

If you can write a recursive definition of something, you can usually write a Python
program to evaluate it. The first step is to decide what the parameters are for
this function. With little effort, you should conclude that factorial has a single
parameter:

def factorial(m):

56 Fruitful functions

If the argument happens to be 0, all we have to do is return 1:

def factorial(n):
if n ==
return 1

Otherwise, and this is the interesting part, we have to make a recursive call to
find the factorial of n — 1 and then multiply it by n:

def factorial(n):
if n ==
return 1
else:
recurse = factorial(n-1)
result = n * recurse
return result

The flow of execution for this program is similar to the flow of countdown in
Section 4.9. If we call factorial with the value 3:

Since 3 is not 0, we take the second branch and calculate the factorial of n-1...

Since 2 is not 0, we take the second branch and calculate the factorial
of n-1...

Since 1 is not 0, we take the second branch and calculate
the factorial of n-1...

Since 0 is 0, we take the first branch and return 1
without making any more recursive calls.

The return value (1) is multiplied by n, which is 1, and the
result is returned.

The return value (1) is multiplied by n, which is 2, and the result is
returned.

The return value (2) is multiplied by n, which is 3, and the result, 6, becomes the
return value of the function call that started the whole process.

Here is what the stack diagram looks like for this sequence of function calls:

5.6 Leap of faith 57

__main__

j 6
factorial n—— 3 recurse —= 2 return —= 6

j 2
factorial n— 2 recurse —= 1 return — 2

j 1
factorial n— 1 recurse —= 1 return —= 1

3 1
factorial n—0

The return values are shown being passed back up the stack. In each frame, the
return value is the value of result, which is the product of n and recurse.

Notice that in the last frame, the local variables recurse and result do not exist,
because the branch that creates them did not execute.

5.6 Leap of faith

Following the flow of execution is one way to read programs, but it can quickly
become labyrinthine. An alternative is what we call the “leap of faith.” When
you come to a function call, instead of following the flow of execution, you assume
that the function works correctly and returns the appropriate value.

In fact, you are already practicing this leap of faith when you use built-in functions.
When you call math.cos or math.exp, you don’t examine the implementations of
those functions. You just assume that they work because the people who wrote
the built-in functions were good programmers.

The same is true when you call one of your own functions. For example, in
Section 5.4, we wrote a function called isDivisible that determines whether
one number is divisible by another. Once we have convinced ourselves that this
function is correct—by testing and examining the code—we can use the function
without looking at the code again.

The same is true of recursive programs. When you get to the recursive call, instead
of following the flow of execution, you should assume that the recursive call works
(yields the correct result) and then ask yourself, “Assuming that I can find the
factorial of n — 1, can I compute the factorial of n?” In this case, it is clear that
you can, by multiplying by n.

58 Fruitful functions

Of course, it’s a bit strange to assume that the function works correctly when you
haven’t finished writing it, but that’s why it’s called a leap of faith!

5.7 One more example

In the previous example, we used temporary variables to spell out the steps and
to make the code easier to debug, but we could have saved a few lines:

def factorial(n):
if n ==
return 1
else:
return n * factorial(n-1)

From now on, we will tend to use the more concise form, but we recommend that
you use the more explicit version while you are developing code. When you have
it working, you can tighten it up if you are feeling inspired.

After factorial, the most common example of a recursively defined mathematical
function is fibonacci, which has the following definition:

fibonacci(0) = 1
fibonacci(1) =1
fibonacci(n) = fibonacci(n — 1) + fibonacci(n — 2);

Translated into Python, it looks like this:

def fibonacci (n):
if n == 0 or n ==
return 1
else:
return fibonacci(n-1) + fibonacci(n-2)

If you try to follow the flow of execution here, even for fairly small values of n,
your head explodes. But according to the leap of faith, if you assume that the
two recursive calls work correctly, then it is clear that you get the right result by
adding them together.

5.8 Checking types

What happens if we call factorial and give it 1.5 as an argument?

5.8 Checking types 59

>>> factorial (1.5)
RuntimeError: Maximum recursion depth exceeded

It looks like an infinite recursion. But how can that be? There is a base case—
when n == 0. The problem is that the values of n miss the base case.

In the first recursive call, the value of n is 0.5. In the next, it is -0.5. From there,
it gets smaller and smaller, but it will never be 0.

We have two choices. We can try to generalize the factorial function to work
with floating-point numbers, or we can make factorial check the type of its
argument. The first option is called the gamma function and it’s a little beyond
the scope of this book. So we’ll go for the second.

We can use the built-in function isinstance to verify the type of the argument.
While we’re at it, we also make sure the argument is positive:

def factorial (m):

if not isinstance(n, int):
print "Factorial is only defined for integers."
return -1

elif n < O:
print "Factorial is only defined for positive integers."
return -1

elif n ==
return 1

else:
return n * factorial(n-1)

Now we have three base cases. The first catches nonintegers. The second catches
negative integers. In both cases, the program prints an error message and returns
a special value, -1, to indicate that something went wrong:

>>> factorial ("fred")

Factorial is only defined for integers.

-1

>>> factorial (-2)

Factorial is only defined for positive integers.
-1

If we get past both checks, then we know that n is a positive integer, and we can
prove that the recursion terminates.

This program demonstrates a pattern sometimes called a guardian. The first two
conditionals act as guardians, protecting the code that follows from values that
might cause an error. The guardians make it possible to prove the correctness of
the code.

60 Fruitful functions

5.9 Glossary
fruitful function: A function that yields a return value.
return value: The value provided as the result of a function call.

temporary variable: A variable used to store an intermediate value in a com-
plex calculation.

dead code: Part of a program that can never be executed, often because it ap-
pears after a return statement.

None: A special Python value returned by functions that have no return state-
ment, or a return statement without an argument.

incremental development: A program development plan intended to avoid de-
bugging by adding and testing only a small amount of code at a time.

scaffolding: Code that is used during program development but is not part of
the final version.

guardian: A condition that checks for and handles circumstances that might
cause an error.

Chapter 6

Iteration

6.1 Multiple assignment

As you may have discovered, it is legal to make more than one assignment to the
same variable. A new assignment makes an existing variable refer to a new value
(and stop referring to the old value).

bruce = 5
print bruce,
bruce = 7
print bruce

The output of this program is 5 7, because the first time bruce is printed, his
value is 5, and the second time, his value is 7. The comma at the end of the
first print statement suppresses the newline after the output, which is why both
outputs appear on the same line.

Here is what multiple assignment looks like in a state diagram:

bruce
\7

With multiple assignment it is especially important to distinguish between an
assignment operation and a statement of equality. Because Python uses the equal
sign (=) for assignment, it is tempting to interpret a statement like a = b as a
statement of equality. It is not!

62 Iteration

First, equality is commutative and assignment is not. For example, in mathemat-
ics, if @ = 7 then 7 = a. But in Python, the statement a = 7 is legal and 7 = a
is not.

Furthermore, in mathematics, a statement of equality is always true. If a = b
now, then a will always equal b. In Python, an assignment statement can make
two variables equal, but they don’t have to stay that way:

a=>5
b=a # a and b are now equal
a=3 # a and b are no longer equal

The third line changes the value of a but does not change the value of b, so they
are no longer equal. (In some programming languages, a different symbol is used
for assignment, such as <- or :=, to avoid confusion.)

Although multiple assignment is frequently helpful, you should use it with caution.
If the values of variables change frequently, it can make the code difficult to read
and debug.

6.2 The while statement

Computers are often used to automate repetitive tasks. Repeating identical or
similar tasks without making errors is something that computers do well and
people do poorly.

We have seen two programs, nLines and countdown, that use recursion to perform
repetition, which is also called iteration. Because iteration is so common, Python
provides several language features to make it easier. The first feature we are going
to look at is the while statement.

Here is what countdown looks like with a while statement:

def countdown(n):
while n > O:
print n
n = n-1
print "Blastoff!"

Since we removed the recursive call, this function is not recursive.

You can almost read the while statement as if it were English. It means, “While
n is greater than 0, continue displaying the value of n and then reducing the value
of n by 1. When you get to 0, display the word Blastoff!”

More formally, here is the flow of execution for a while statement:

6.2 The while statement 63

1. Evaluate the condition, yielding O or 1.

2. If the condition is false (0), exit the while statement and continue execution
at the next statement.

3. If the condition is true (1), execute each of the statements in the body and
then go back to step 1.

The body consists of all of the statements below the header with the same inden-
tation.

This type of flow is called a loop because the third step loops back around to
the top. Notice that if the condition is false the first time through the loop, the
statements inside the loop are never executed.

The body of the loop should change the value of one or more variables so that
eventually the condition becomes false and the loop terminates. Otherwise the
loop will repeat forever, which is called an infinite loop. An endless source
of amusement for computer scientists is the observation that the directions on
shampoo, “Lather, rinse, repeat,” are an infinite loop.

In the case of countdown, we can prove that the loop terminates because we know
that the value of n is finite, and we can see that the value of n gets smaller each
time through the loop, so eventually we have to get to 0. In other cases, it is not
so easy to tell:

def sequence(n):

while n != 1:
print n,
if n%2 == 0: # n is even
n =n/2
else: # n is odd

n = nx3+1

The condition for this loop isn != 1, so the loop will continue until n is 1, which
will make the condition false.

Each time through the loop, the program outputs the value of n and then checks
whether it is even or odd. If it is even, the value of n is divided by 2. If it is odd,
the value is replaced by n*3+1. For example, if the starting value (the argument
passed to sequence) is 3, the resulting sequence is 3, 10, 5, 16, 8, 4, 2, 1.

Since n sometimes increases and sometimes decreases, there is no obvious proof
that n will ever reach 1, or that the program terminates. For some particular
values of n, we can prove termination. For example, if the starting value is a
power of two, then the value of n will be even each time through the loop until it
reaches 1. The previous example ends with such a sequence, starting with 16.

64 Iteration

Particular values aside, the interesting question is whether we can prove that this
program terminates for all positive values of n. So far, no one has been able to
prove it or disprove it!

As an exercise, rewrite the function nLines from Section 4.9 using
iteration instead of recursion.

6.3 Tables

One of the things loops are good for is generating tabular data. Before computers
were readily available, people had to calculate logarithms, sines and cosines, and
other mathematical functions by hand. To make that easier, mathematics books
contained long tables listing the values of these functions. Creating the tables was
slow and boring, and they tended to be full of errors.

When computers appeared on the scene, one of the initial reactions was, “This
is great! We can use the computers to generate the tables, so there will be no
errors.” That turned out to be true (mostly) but shortsighted. Soon thereafter,
computers and calculators were so pervasive that the tables became obsolete.

Well, almost. For some operations, computers use tables of values to get an ap-
proximate answer and then perform computations to improve the approximation.
In some cases, there have been errors in the underlying tables, most famously in
the table the Intel Pentium used to perform floating-point division.

Although a log table is not as useful as it once was, it still makes a good example of
iteration. The following program outputs a sequence of values in the left column
and their logarithms in the right column:

x =1.0

while x < 10.0:
print x, ’\t’, math.log(x)
x=x+1.0

The string >\t’ represents a tab character.

As characters and strings are displayed on the screen, an invisible marker called the
cursor keeps track of where the next character will go. After a print statement,
the cursor normally goes to the beginning of the next line.

The tab character shifts the cursor to the right until it reaches one of the tab
stops. Tabs are useful for making columns of text line up, as in the output of the
previous program:

6.3 Tables 65

1.0 0.0

2.0 0.69314718056
3.0 1.09861228867
4.0 1.38629436112
5.0 1.60943791243
6.0 1.79175946923
7.0 1.94591014906
8.0 2.07944154168
9.0 2.19722457734

If these values seem odd, remember that the log function uses base e. Since powers
of two are so important in computer science, we often want to find logarithms with
respect to base 2. To do that, we can use the following formula:

Changing the output statement to:

print x, ’\t’, math.log(x)/math.log(2.0)

yields:

1.0 0.0

2.0 1.0

3.0 1.58496250072
4.0 2.0

5.0 2.32192809489
6.0 2.58496250072
7.0 2.80735492206
8.0 3.0

9.0 3.16992500144

We can see that 1, 2, 4, and 8 are powers of two because their logarithms base 2
are round numbers. If we wanted to find the logarithms of other powers of two,
we could modify the program like this:

x=1.0

while x < 100.0:
print x, ’\t’, math.log(x)/math.log(2.0)
x=x* 2.0

Now instead of adding something to x each time through the loop, which yields an
arithmetic sequence, we multiply x by something, yielding a geometric sequence.
The result is:

66 Iteration

1.0 0.0
2.0 1.0
4.0 2.0
8.0 3.0
16.0 4.0
32.0 5.0
64.0 6.0

Because of the tab characters between the columns, the position of the second
column does not depend on the number of digits in the first column.

Logarithm tables may not be useful any more, but for computer scientists, knowing
the powers of two is!

As an exercise, modify this program so that it outputs the powers of
two up to 65,536 (that’s 219). Print it out and memorize it.

The backslash character in >\t’ indicates the beginning of an escape sequence.
Escape sequences are used to represent invisible characters like tabs and newlines.
The sequence \n represents a newline.

An escape sequence can appear anywhere in a string; in the example, the tab
escape sequence is the only thing in the string.

How do you think you represent a backslash in a string?
As an exercise, write a single string that

produces
this
output.

6.4 Two-dimensional tables

A two-dimensional table is a table where you read the value at the intersection
of a row and a column. A multiplication table is a good example. Let’s say you
want to print a multiplication table for the values from 1 to 6.

A good way to start is to write a loop that print